"KQML as an Agent Communication Language - Finin (ResearchIndex) Page 1 of 1

KQML as an Agent Communication Language View or download:
(1994) (Make Corrections) (382 citations) umbc.edu/agents/kgml/pape...kamlacl.ps
Tim Finin, Richard Fritzson, Don McKay, Robin McEntire _umbc.edu/kgml/papers/kgmiacl.ps
Proceedings of the 3rd International Conference on cuiwww.unige.ch/OSG/pe...kqmlacl.ps.gz
Information and Knowledge Management (CIKM'94) ~ Cached: PS.gz PS PDF DjVu Image Update Help
H Home/Search Bookmark Context From: inf ufsc.br/iad/users/c...eastman (more)
..c...!.t.e....ss..g!, From: cuisg11.unige.ch/OSG/people/jv...
Related (Enter author homepages)
(Enter summary) Rate this article: 1 2 3 4 5 (best)

View Comments (0)

Abstract: This paper describes the design of and experimentation with the
Knowledge Query and Manipulation Language (KQML), a new language and protocol for exchanging information
and knowledge. This work is part of a larger effort, the ARPA Knowledge Sharing Effort which is aimed at
developing techniques and methodology for building large-scale knowledge bases which are sharable and
reusable. KQML is both a message format and a message-handling protocol to support run-time knowledge
sharing among agents. ... (Update)

Context of citations to this paper: More

...ndcessaires h la communication entre les agents en plus de fournir un vdrificateur de la syntaxe de KQML.
Rappelons que KQML [14] est un langage d interrogation et de manipulation des connaissances. C est un
langage basd sur les acres du langage naturel [8] I1...

...and it s modification in an explicit way. All the agents use Knowledge Query and Manipulation Language
(KQML) for communication [8]. AP and PA multiagent system play a key role in enabling INTERLABS
distributed virtual campus Each INTERLABS client uses a Web navigator...

Cited by: More
Interaction Modal Logic for multiagent systems based - On Bdi Architecture (Correct)
Stream Oriented Interactions for Highly - Distributed And Disconnected (Correct)

Similar documents (at the sentence level): More
31.0%: KQML as an Agent Communication Language - Finin, Labrou, Mayfield (1994) (Correct)
27.4%: KQML as an agent communication language - Finin, Labrou, Mayfield (1995) (Correct)

19.1%. Desiderata for Agent Communication Languages - Mayfield, Labrou, Finin (1995) (Correct)

0.2: A Security Architecture for Agent Communication Languages - Mayfield, Finin (Correct)

Similar documents based on text: More All

0.7: A Security Architecture Based on Trust Management for.. - Systems Lalana Kagal (2002) (Correct)
0.7. A Reactive Service Composition Architecture for.. - Chakraborty.. (2002) (Correct)

http://citeseer.ist.psu.edu/20174.html 4/14/04

KQML as an Agent Communication Language *

Tim Finin and Richard Fritzson
Computer Science Department

University of Maryland Baltimore County

Baltimore MD USA
finin@cs.umbc.edu
fritzson@cs.umbc.edu

Abstract

This paper describes the design of and experimentation with
the Knowledge Query and Manipulation Language (KQML),
a new language and protocol for exchanging information
and knowledge. This work is part of a larger effort, the
ARPA Knowledge Sharing Effort which is aimed at devel-
oping techniques and methodology for building large-scale
knowledge bases which are sharable and reusable. KQML is
both a message format and a message-handling protocol to
support run-time knowledge sharing among agents. KQML
focuses on an extensible set of performatives, which defines
the permissible “speech acts” agents may use and comprise
a substrate on which to develop higher-level models of in-
teragent interaction such as contract nets and negotiation.
In addition, KQML provides a basic architecture for knowl-
edge sharing through a special class of agent called com-
munication facilitators which coordinate the interactions of
other agents The ideas which underlie the evolving design of
KQML are currently being explored through experimental
prototype systems which are being used to support several
testbeds in such areas as concurrent engineering, intelligent
design and intelligent planning and scheduling.

1 Introduction

The computational environment which is emerging in such
programs as the National Information Infrastructure (NII)
is characterized by being highly distributed, heterogeneous,
extremely dynamic, and comprising a large number of au-
tonomous nodes. An information system operating in such
an environment must handle several emerging problems:

e The predominant architecture on the Internet, the cli-
ent-server model, is too restrictive. It is difficult for
current Internet information services to take the ini-
tiative in bringing new, critical material to a user’s
attention. Some nodes will want to act as both clients

*This work was supported in part by the Air Force Office of Sci-
entific Research under contract F49620-92-J-0174, and the Advanced
Research Projects Agency monitored under USAF contracts F30602-
93-C-0177 and F30602-93-C-0028 by Rome Laboratory.

To appear in The Proceedings of the Third International
Conference on Information and Knowledge Management
(CIKM’94), ACM Press, November 1994.

Don McKay and Robin McEntire
Valley Forge Laboratory
Unisys Corporation
Paoli PA USA
mckay@vfl.paramax.com
robin@vfl.paramax.com

and servers, depending on who they are interacting
with.

o Several forms of heterogeneity need to be handled, e.g.
different platforms, different data formats, the capabil-
ities of different information services, and the imple-
mentation technologies employed.

¢ Many software technologies such as event simulation,
applied natural language processing, knowledge-based
reasoning, advanced information retrieval, speech pro-
cessing, etc. have matured to the point of being ready
to participate in and contribute to an NII type environ-
ment. However, there is a lack of tools and techniques
for constructing intelligent clients and servers or for
building agent—based software in general.

A community of intelligent agents can address each of the
problems mentioned above. When we describe these agents
as intelligent, we refer to their ability to: communicate
with each other using an expressive communication lan-
guage; work together cooperatively to accomplish complex
goals; act on their own initiative; and use local informa-
tion and knowledge to manage local resources and handle
requests from peer agents.

Knowledge Query and Manipulation Language (KQML)
is a language that is designed to support interactions among
intelligent software agents. It was developed by the ARPA
supported Knowledge Sharing Effort [24, 27] and separately
implemented by several research groups. It has been suc-
cessfully used to implement a variety of information systems
using different software architectures.

The Knowledge Sharing Effort

The ARPA Knowledge Sharing Effort (KSE) is a consor-
tium to develop conventions facilitating sharing and reuse
of knowledge bases and knowledge based systems. Its goal
is to define, develop, and test infrastructure and support-
ing technology to enable participants to build much bigger
and more broadly functional systems than could be achieved
working alone. The KSE is organized around four working
groups each of which addresses a complementary problem
identified in current knowledge representation technology:
Interlingua, KRSS, SRKB, and Exzternal Interfaces.

The Interlingua Groupis developing a common language
for expressing the content of a knowledge-base. This group
has published a specification document describing the Knowl-
edge Interchange Formalism or KIF (15] which is based on
first order logic with some extensions to support non-mono-
tonic reason and definitions. KIF includes both a specifica-

tion of a syntax for the language as well as a specification for
the semantics. KIF can be used to support the translation
from one content language to another or as a common con-
tent language between two agents which use different native
representation languages. Information of KIF and associ-
ated tools and is available from http://www.cs.umbc.edu-
/kse/kif/ .

The KRSS Group (Knowledge Representation System
Specification) is focussed on defining common constructs
within families of representation languages. It has recently
finished a common specification for terminological represen-
tations in the KL-ONE family. This document and other
information on the KRSS group is available as http://wwu.-
cs.umbc.edu/kse/krss/ .

The SRKB Group (Shared, Reusable Knowledge Bases)
is concerned with facilitating consensus on contents of shar-
able knowledge bases, with sub-interests in shared knowl-
edge for particular topic areas and in topic-independent de-
velopment tools and methodologies. It has established a
repository for sharable ontologies and tools which is avail-
able over the Internet as http://www.cs.umbc.edu/kse/srkb/

The scope of the Ezternal Interfaces Group is the run-
time interactions between knowledge based systems and other
modules in a run-time environment. Special attention has
been given to two important cases — communication between
two knowledge-based systems and communication between a
knowledge-based system and a conventional database man-
agement system [26]. The KQML language is one of the
main results which have come out of the external interfaces
group of the KSE. General information is available from
http://wev.cs.umbc.edu/kqml.

2 KQML and Intelligent Information Integration

We could address many of the difficulties of communication
between intelligent agents described in the Introduction by
giving them a common language. In linguistic terms, this
means that they would share a common syntax, semantics
and pragmatics.

Getting information processes, especially Al processes,
to share a common syntax is a major problem. There is no
universally accepted language in which to represent infor-
mation and queries. Languages such as KIF [15], extended
SQL, and LOOM {22] have their supporters, but there is
also a strong position that it is too early to standardize on
any representation language [19). As a result, it is currently
necessary to say that two agents can communicate with each
other if they have a common representation language or use
languages that are inter-translatable.

Assuming a common or translatable language, it is still
necessary for communicating agents to share a framework
of knowledge in order to interpret message they exchange.
This is not really a shared semantics, but a shared ontology.
There is not likely to be one shared ontology, but many.
Shared ontologies are under development in many impor-
tant application domains such as planning and scheduling,
biclogy and medicine.

Pragmatics among computer processes includes 1) know-
ing who to talk with and how to find them and 2) knowing
how to initiate and maintain an exchange. KQML is con-
cerned primarily with pragmatics (and secondarily with se-
mantics). It is a language and a set of protocols that support
computer programs in identifying, connecting with and ex-
changing information with other programs.

(5]
I L
(B A 1220

Figure 1: Several basic communication protocols are sup-
ported in KQML.

v

Agent Communication Protocols

There are a variety of interprocess information exchange
protocols. In the simplest, one agent acts as a client and
sends a query to another agent acting as a server and then
waits for a reply, as is shown between agents A and B in
Figure 1. The server’s reply might consist of a single answer
or a collection or set of answers. In another common case,
shown between agents A and C, the server’s reply is not the
complete answer but a handle which allows the client to ask
for the components of the reply, one at a time. A common
example of this exchange occurs when a client queries a rela-
tional database or a reasoner which produces a sequence of
instantiations in response. Although this exchange requires
that the server maintain some internal state, the individual
transactions are as before — involving a synchronous com-
munication between the agents. A somewhat different case
occurs when the client subscribes to a server’s output and an
indefinite number of asynchronousreplies arrive at irregular
intervals, as between agents A and D in Figure 1. The client
does not know when each reply message will be arriving and
may be busy performing some other task when they do.

There are other variations of these protocols. Messages
might not be addressed to specific hosts, but broadcast to
a number of them. The replies, arriving synchronously or
asynchronously have to be collated and, optionally, associ-
ated with the query that they are replying to.

Facilitators and Mediators

One of the design criteria for KQML was to produce a lan-
guage that could support a wide variety of interesting agent
architectures. Our approach to this is to introduce a small
number of KQML performatives which are used by agents to
describe the meta-data specifying the information require-
ments and capabilities and then to introduce a special class
of agents called communication facilitators [16). A facilita-
tor is an agent that performs various useful communication
services, e.g. maintaining a registry of service names, for-
warding messages to named services, routing messages based
on content, providing “matchmaking” between information
providers and clients, and providing mediation and transla-
tion services.

As an example, consider a case where an agent A would
like to know the truth of a sentence X, and agent B may
have X in its knowledge-base, and a facilitator agent F is
available. If A is aware that it is appropriate to send a query
about X to B, then it can use a simple point to point protocol
and send the query directly to B, asin Figure 2. If, however,
A is not aware of what agents are available, or which may
have X in their knowledge-bases, or how to contact those of
whom it is aware, then a variety of approaches can be used.
Figure 3 shows an example in which A uses the subscribe
performative to request that facilitator F monitor for the
truth of X. If B subsequently informs F that it belicves X
to be true, then F can in turn inform A.

Figure 2: When A is aware of B and of the appropri-
ateness of querying B about X, a simple point-to-point
protocol can be used.

Figure 4 shows a slightly different situation. A asks F
to find an agent that can process an ask{X) performative.
B independently informs F that it is willing to accept per-
formatives matching ask(X). Once F has both of these mes-
sages, it sends B the query, gets a response and forwards it
to A.

In Figure 5, A uses a slightly different performative to
inform F of its interest in knowing the truth of X. The re-
cruit performative asks the recipient to find an agent that
is willing to receive and process an embedded performative.
That agent’s response is then to be directly sent to the initi-
ating agent. Although the difference between the examples
used in Figures 3 and 5 are small for a simple ask query,
consider what would happen if the embedded performative
was subscribe(ask-all(X)).

As a final example, consider the exchange in Figure 6 in
which A asks F to “recommend” an agent to whom it would
be appropriate to send the performative ask(X)). Once F
learns that B is willing to accept ask(X) performatives, it
replies to A with the name of agent B. A is then free to
initiate a dialog with B to answer this and similar queries.

From these examples, we can see that one of the main
functions of facilitator agents is to help other agents find
appropriate clients and servers. The problem of how agents
find facilitators in the first place is not strictly an issue for
KQML and has a variety of possible solutions.

Current KQML-based applications have used one of two
simple techniques. In the PACT project [7], for example,
all agents used a central, common facilitator whose location
was a parameter initialized when the agents were launched.
In the ARPI applications (5], finding and establishing con-
tact with a local facilitator is one of the functions of the
KQML API. When each agent starts up, its KQML router
module announces itself to the local facilitator so that it is
registered in the local database. When the application exits,
the router sends another KQML message to the facilitator,
removing the application from the facilitator’s database. By

subscnbe(ask(x/)),* tell(x)

Figure 3: Agent A can ask facilitator agent F to monitor
for changes in its knowledge-base. Facilitators are agents
that deal in knowledge about the information services
and requirements of other agents and offer such services
as forwarding, brokering, recruiting and content-based
routing.

broker(ask(x)) adveruse(ask(x))
teII(X)

Figure 4: The broker performative is used to ask a facil-
itator agent to find another agent which can process a
given performative and to receive and forward the reply.

convention, a facilitator agent should be running on a host
machine with the symbolic address facilitator.domasin and
listening to the standard KQML port.

Scaling up to a national-scale information enterprise will
require the incorporation of new techniques. The current
Internet Domain Name Servers (DNS) use a very simple,
yet robust technique for mapping symbolic names into in-
ternet IP addresses. Similar techniques can be used to map
symbolic agent “names” into specific agent references that
can be used to contact the agent. What will be involved is
the development of a hierarchical “ontology” for organizing
information that is orthogonal to the hierarchical scheme
used to organize the Internet. Figure 7 shows such an agent
which could function as such facilitator-agent-server.

The role of KQML

As a communication language for intelligent information
agents, KQML draws on work in both distributed systems
and distributed Al and offers a level of abstraction that
should be useful to both.

With respect to distributed software systems in general,
KQML provides an abstraction of a process as an informa-
tion agent as a knowledge-based system (KBS). The KBS
model easily subsumes a broad range of commonly used
information agent models in use today, including database
management systems, hypertext systems, server-oriented soft-
ware (e.g. finger demons, mail servers, HTML servers, etc),
simulations, etc. Such systems can usually be modeled as
having two virtual knowledge bases — one representing the
agent’s information store (i.e., beliefs) and the other repre-
senting its intentions (i.e., goals). We hope that future stan-
dards for interchange and interoperability languages and
protocols will be based on this very powerful and rich model.
This will avoid the built-in limitations of more constrained
models (e.g., that of a simple remote procedure call or rela-
tional database query) and also make it easier to integrate
truly intelligent agents with simpler and more mundane in-
formation clients and servers. Current KQML implementa-
tions have used standard communication and messaging pro-
tocols as a transport layer, including TCP/IP, email, Linda,
HTTP, and CORBA. As standards in this area evolve and

recrun(tewwmse(“k“))
| ask(x | i
O tell(X)

Figure 5: The recruit performative is used to ask a fa-
cilitator agent to find an appropriate agent to which an
embedded performative can be forwarded. Any reply is
returned directly to the original agent.

recommend(ask(X}), advertise(ask(X))
o (]

Otell(X)

Figure 6: The recommend performative is used to ask a
facilitator agent to respond with the “name” of another
agent which is appropriate for sending a particular per-
formative.

new standards are introduced, we expect that KQML im-
plementations will use them.

The contribution that KQML makes to Distributed Al
research is to offer a standard language and protocol that
intelligent agents can use to communicate among themselves
as well as with other information servers and clients. The in-
dependence of the communication and content languages af-
fords a flexibility which is quite useful. In designing KQML,
our goal is to build in the primitives necessary to support all
of the interesting agent architectures currently in use. If we
have been successful, then KQML should serve to be a good
tool for DAI research, and, if used widely, should enable
greater research collaboration among DAI researchers.

3 The KQML Language

Communication takes place on several levels. The content
of the message is only a part of the communication. Be-
ing able to locate and engage the attention of someone you
want to communicate with is a part of the process. Pack-
aging your message in a way which makes your purpose in
communicating clear is another.

When using KQML, a software agent transmits content
messages, composed in a language of its own choice, wrapped
inside of a KQML message. The content message can be ex-
pressed in any representation language and written in either
ASCII strings or one of many binary notations (e.g. network
independent XDR representations). All KQML implemen-
tations ignore the content portion of the message except to
the extent that they need to recognize where it begins and
ends.

The syntax of KQML is based on a balanced parenthesis
list. The initial element of the list is the performative and
the remaining elements are the performative’s arguments as
keyword/value pairs. Because the language is relatively sim-
ple, the actual syntax is not significant and can be changed
if necessary in the future. The syntax reveals the roots of
the initial implementations, which were done in Common
Lisp, but has turned out to be quite flexible.

KQML is expected to be supported by an software sub-
strate which makes it possible for agents to locate one an-
other in a distributed environment. Most current implemen-
tations come with custom environments of this type; these
are commonly based on helper programs called routers or
facilitators. These environments are not a specified part of
KQML. They are not standardized and most of the cur-
rent KQML environments will evolve to use some of the
emerging commercial frameworks, such as OMG’s CORBA
or Microsoft’s OLE2, as they become more widely used.

The KQML language supports these implementations by
allowing the KQML messages to carry information which is

[::] Agent [:]

Cache

Figure 7: Scme facilitator agents will specialize in know-
ing how to contact other agents (among other things)
and can thus act as “agent-servers”.

useful to them, such as the names and addresses of the send-
ing and receiving agents, a unique message identifier, and
notations by any intervening agents. There are also optional
features of the KQML language which contain descriptions
of the content: its language, the ontology it assumes, and
some type of more general description, such as a descriptor
naming a topic within the ontology. These optional fea-
tures make it possible for the supporting environments to
analyze, route and deliver messages based on their content,
even though the content itself is inaccessible.

The forms of these parts of the KQML message may
vary, depending on the transport mechanism used to carry
the KQML messages. In implementations which use TCP
streams as the transport mechanism, they appear as fields
in the body of the message. In an earlier version of KQML,
these fields were kept in reservedlocations, in an outer wrap-
per of the message, to emphasize the difference from other
fields. In other transport mechanisms the syntax and con-
tent of these message may be different. For example, in the
E-mail implementation of KQML, these ficlds are embedded
in KQML mail headers.

The set of performatives forms the core of the language.
It determines the kinds of interactions one can have with
a KQML-speaking agent. The primary function of the per-
formatives is to identify the protocol to be used to deliver
the message and to supply a speech act which the sender
attaches to the content. The performative signifies that the
content is an assertion, a query, a command, or any other
mutually agreed upon speech act. It also describes how the
sender would like any reply to be delivered, that is, what
protocol will be followed.

Conceptually, a KQML message consists of a performa-
tive, its associated arguments which include the real content
of the message, and a set of optional arguments transport
which describe the content and perhaps the sender and re-
ceiver. For example, a message representing a query about
the price of a share of IBM stock might be encoded as:

(ask-one
:content (PRICE IBM ?7price)
:receiver stock-server
:language LPROLOG
:ontology NYSE-TICKS)

In this message, the KQML performative is ask-one, the
content is (price ibm ¢price), the ontology assumed by the
query is identified by the token nyse-ticks, the receiver of the
message is to be a server identified as stock-server and the
query is written in a language called LPROLOG. A similar
query could be conveyed using standard Prolog as the con-

tent language in a form that requests the set of all answers
as:

(ask-all
:content "price(IBM, [7price, ?time])"
:receiver stock-server
:language standard_prolog
:ontology NYSE-TICKS)

The first message asks for a single reply; the second asks
for a set as a reply. If we had posed a query which had
a large number of replies, would could ask that they each
be sent separately, instead of as a single large collection by
changing the performative. (To save space, we will no longer
repeat fields which are the same as in the above examples.)

(stream-all
;3?VL is a large set of symbols
:content (PRICE ?VL 7price))

The stream-all performative asks that a set of answers be
turned into a set of replies. To exert control of this set of
reply messages we can wrap another performative around
the preceding message.

(standby
:content (stream-all
:content (PRICE ?7VL “?price)))

The standbyperformative expects a KQML language con-
tent and it requests that the agent receiving the request take
the stream of messages and hold them and release them one
at a time, each time the sending agent transmits a message
with the nezt performative. The exchange of next/reply
messages can continue until the stream is depleted or until
the sending agent sends either a discard message (i.e. dis-
card all remaining replies) or a rest message (i.e. send all
of the remaining replies now). This combination is so useful
that it can be abbreviated:

(generate
:content (PRICE 7VL ?price)))

A different set of answers to the same query can be ob-
tained (from a suitable server) with the query:

(subscribe
:content (stream-all
:content (PRICE IBM ?price)))

This performative requests all future changes to the an-
swer to the query, i.e. it is a stream of messages which are
gencrated as the trading price of IBM stock changes. An
abbreviation for subscribe/stream combination is known a
monitor.

(monitor
:content (PRICE IBM 7price)))

Though there is a predefined set of reserved performa-
tives, it is neither a minimal required set nor a closed one,
A KQML agent may choose to handle only a few (perhaps
one or two) performatives. The set is extensible; a commu-
nity of agents may choose to use additional performatives if
they agree on their interpretation and the protocol associ-
ated with each. However, an implementation that chooses
to implement one of the reserved performatives must imple-
ment it in the standard way.

Basic query performatives:

e evaluate, ask-if, ask-in, ask-one, ask-all, ...
Multi-response query performatives:

e stream-in, stream-all, ...
Response performatives:

e reply, sorry, ...
Generic informational performatives:

o tell, achieve, cancel, untell, unachieve, ...
Generator performatives:

e standby, ready, next, rest, discard, generator, ...
Capability-definition performatives:

o advertise, subscribe, monitor, import, export, ...
Networking performatives:

® register, unregister, forward, broadcast, route, ...

Figure 8: There are about two dozen reserved performa-
tive names which fall into seven basic categories.

Some of the reserved performatives are shown in Fig-
ure 8. In addition to standard communication performatives
such as ask, tell, deny, delete, and more protocol oriented
performatives such as subscribe, KQML contains performa-
tives related to the non-protocol aspects of pragmatics, such
as advertise - which allows an agent to announce what kinds

.of asynchronous messages it is willing to handle; and recrust

- which can be used to find suitable agents for particular
types of messages. For example, the server in the above
example might have earlier announced:

(advertise
:ontology NYSE-TICKS
:language LPROLOG
:content (monitor
:content (PRICE ?7x ?y)))

Which is roughly equivalent to announcing that it is a stock
ticker and inviting monitor requests concerning stock prices.
This advertise message is what justifies the subscriber’s send-
ing the monitor message.

4 KQML Software Architectures

KQML was not defined by a single resecarch group for a
particular project. It was created by a committee of rep-
resentatives from different projects, all of which were con-
cerned with managing distributed implementations of sys-
tems. One was a distributed collaboration of expert systems
in the planning and scheduling domain. Another was con-
cerned with problem decomposition and distribution in the
CAD/CAM domain. A common concern was the manage-
ment of a collection of cooperating processes and the simpli-
fication of the programming requirements for implementing
a system of this type. However, the groups did not share a
common communication architecture. As a result, KQML
does not dictate a particular system architecture, and sev-
eral different systems have evolved.

Our group has two implementations of KQML. One is
written in Common Lisp, the other in C. Both are fully in-
teroperable and are frequently used together. The design of
these implementations was motivated by the need to inte-
grate a variety of preexisting expert systems into a collab-
orating group of processes. Most of the systems involved
were never designed to operate in a communication oriented

*m KQML KQML
strings objects

5 |
3
5 [~ Agent
2 X

£ '\ - \

o

£ 4

2 Network Function

connections calls

Figure 9: A router gives an application a single interface
to the network, providing both client and server capabil-
ities, managing multiple simultaneous connections, and
handling some KQML interactions autonomously. The
KRIL is the interface to the agent application and pro-
vides internal access points to which the router deliv-
ers incoming messages, analyzes outgoing messages for
appropriate domain tagging and routing, and provides
application specific interface and procedures for commu-
nication access.

environment. The design is built around two specialized pro-
grams, a router and a facilitator, and a library of interface
routines, called a KRIL.

KQML Routers

Routers are content independent message routers. FEach
KQML speaking software agent is associated with its own
separate router process. All routers are identical; each is just
an executing copy of the same program. A router handles
all KQML messages going to and from its associated agent.
Because each program has an associated router process, it is
not necessary to make extensive changes to each program’s
internal organization to allow it to asynchronously receive
messages from a variety of independent sources. The router
provides this service for the agent and provides the agent
with a single point of contact for the rest of the network. It
provides both client and server functions for the application
and manages multiple simultaneous connections with other
agents.

The router never looks at the content fields of the mes-
sages it handles. It relies on the KQML performatives and
its arguments. If an outgoing KQML message specifies a
particular Internet address, the router directs the message
to it. If the message specifies a particular service, the router
will attempt to find an Internet address for that service and
deliver the message to it. If the message only provides a de-
scription of the content (e.g. query, :ontology “geo-domain-
37, :language “Prolog”, etc.) the router may attempt to find
a server which can deal with the message and it will deliver
it there, or it may choose to forward it to a smarter com-
munication agent which may be willing to route it. Routers
can be implemented with varying degrees of sophistication
~ they can not guarantee to deliver all messages.

KQML Facilitators

To deliver messages that are incompletely addressed, routers
rely on facilitators. A facilitator is a network application
which provides useful network services. It maintains a reg-
istry of service names; it will forward messages on request
to named services. It may provide matchmaking services
between information providers and consumers. Facilitators
are actual network software agents which have their own

KQML routers to handle their traffic and deal exclusively in
KQML messages. There is typically one facilitator for each
local group of agents. This can translate into one facilitator
per local site or one per project; there may be multiple local
facilitators to provide redundancy. When each application
starts up, its router announces itself to the local facilitator
so that it is registered in the local database. When the ap-
plication exits, the router sends another KQML message to
the facilitator, removing the application from the facilita-
tor’s database. In this way applications can find each other
without there having to be a hand maintained list of local
services.

KQML KRILs

Since the router is a separate process from the application,
it is necessary to have a programming interface between the
application and the router. This application program inter-
face (API) is called a KRIL (KQML Router Interface Li-
brary). While the router is a separate process, with no un-
derstanding of the content field of the KQML message, the
KRIL API is embedded in the application and has access
to the application’s tools for analyzing the content. While
there is only one piece of router code, which is instantiated
for each process, there can be various KRILs, one for each
application type and one for each application language. The
general goal of the KRIL is to make access to the router as
simple as possible for the programmer.

To this end, a KRIL can be as tightly embedded in
the application, or even the application’s programming lan-
guage, asis desirable. For example, an early implementation
of KQML featured a KRIL for the Prolog language which
had only a simple declarative interface for the programmer.
During the operation of the Prolog interpreter, whenever
the Prolog database was searched for predicates, the KRIL
would intercept the search; determine if the desired predi-
cates were actually being supplied by a remote agent; for-
mulate and pose an appropriate KQML query; and return
the replies to the Prolog interpreter as though they were
recovered from the internal database. The Prolog program
itself contained no mention of the distributed processing go-
ing on except for the declaration of which predicates were
to be treated as remote predicates.

It is not necessary to completely embed the KRIL in the
application’s programming language. A simple KRIL gen-
erally provides two programmatic entries. For initiating a
transaction there is a send-kqml-message function. This
accepts a message content and as much information about
the message and its destination as can be provided and re-
turns either the remote agent’s reply (if the message trans-
mission is synchronous and the process blocks until a reply
is received) or a simple code signifying the message was sent.
For handling incoming asynchronous messages, there is usu-
ally a declare-message-handler function. This allows the
application programmer to declare which functions should
be invoked when messages arrive. Depending on the KRILs
capabilities, the incoming messages can be sorted according
to performative, or topic, or other features, and routed to
different message handling functions.

In addition to these programming interfaces, KRILs ac-
cept different types of declarations which allow them to reg-
ister their application with local facilitators and contact re-
mote agents to advise them that they are interested in re-
ceiving data from them. Our group has implemented a va-
riety of experimental KRILs, for Common Lisp, C, Prelog,
Mosaic, SQL, and other tools.

5 Experience with KQML

The KQML language and implementations of the protocol
have been used in several prototype and demonstration sys-
tems. The applications have ranged from concurrent de-
sign and engineering of hardware and software systems, mil-
itary transportation logistics planning and scheduling, flex-
ible architectures for large-scale heterogeneous information
systems, agent-based software integration and cooperative
information access planning and retrieval. KQML has the
potential to significantly enhance the capabilities and func-
tionality of large-scale integration and intercperability ef-
forts now underway in communication and information tech-
nology such as the national information infrastructure and
OMG’s CORBA, as well as in application areas electronic
commerce, health information systems and virtual enter-
prise integration. The content languages used have included
languages intended for knowledge exchange including the
Knowledge Interchange Format (KIF) and the Knowledge
Representation Specification Language (KRSL) [21] as well
as other more traditional languages such as SQL. Early ex-
perimentations with KQML began in 1990. The following
is a representative selection of applications and experiments
developed using KQML.

The design and engineering of complex computer sys-
tems, whether exclusively hardware or software systems or
both, today involves multiple design and engineering disci-
plines. Many such systems are developed in fast cycle or
concurrent processes which involve the immediate and con-
tinual consideration of end-product constraints, e.g., mar-
ketability, manufacturing planning, etc. Further, the design,
engineering and manufacturing components are also likely to
be distributed across organizational and company bound-
aries. KQML has proved highly effective in the integration
of diverse tools and systems enabling new tool interactions
and supporting a high-level communication infrastructure
reducing integration cost as well as flexible communication
across multiple networking systems. The use of KQML in
these demonstrations has allowed the integrators to focus
on what the integration of design and engineering tools can
accomplish and appropriately deemphasized how the tools
communicate (17, 23, 8, 10).

We have used KQML as the communication language
in several technology integration experiments in the ARPA
Rome Lab Planning Initiative. One of these experiments
supported an integrated planning and scheduling system for
military transportation logistics linking a planning agent (in
SIPE (30, 4]), with a scheduler (in Common Lisp), a knowl-
edge base (in LOOM (22]), and a case based reasoning tool
(in Common Lisp). All of the components integrated were
preexisting systems which were not designed to work in a
cooperative distributed environment.

In a second experiment, we developed a information agent
consisting of CoBASE [6], a cooperative front-end, SIMS
(1, 2], an information mediator for planning information ac-
cess, and LIM [26], an information mediator for translating
relational data into knowledge structures. CoBASE pro-
cesses a query, and, if no responses are found relaxes the
query based upon approximation operators and domain se-
mantics and executes the query again. CoBASE generates a
single knowledge-based query for SIMS which using knowl-
edge of different information sources selects which of sev-
eral information sources to access, partitions the query and
optimizes access. Each of the resulting queries in this ex-
periment is sent to a LIM knowledge server which answers
the query by creating objects from tuples in a relational

database. A LIM server front-ends each different database.
This experiment was run over the internet involving three,
geographically dispersed sites.

Agent-Base Software Integration [18] is an effort under-
way at Stanford University which applying KQML as an
integrating framework for general software systems. Using
KQML, a federated architecture incorporating a highly so-
phisticated facilitator is developed which supports an agent-
based view of sofiware integration and interoperation [16].
The facilitator in this architecture is an intelligent agent
used to process and reason about the content of KQML
messages supporting tighter integration of disparate soft-
ware systems.

We have also successfully used KQML in other smaller
demonstrations integrating distributed clients (in C) with
mediators which were retrieving data from distributed da-
tabases. Mediators are not just limited distributed database
access. In another demonstration, we experimented with a
KQML URL for the World Wide Web. The static nature
of links within such hypermedia structures lends itself to
be extended with virtual and dynamic links to arbitrary
information sources as can be supported easily with KQML.

6 Conclusion

This paper has described KQML - a language and associated
protocol by which intelligent software agents can communi-
cate to share information and knowledge. We believe that
KQML, or something very much like it, will be important in
building the distributed agent-oriented information systems
of the future.

The design of KQML has continued to evolve as the ideas
are explored and feedback is received from the prototypes
and the attempts to use them in real testbed situatioms.
Furthermore, new standards for sharing persistent object-
oriented structures are being developed and promulgated,
such as OMG’s CORBA specification and Microsoft’s OLE
2.0. Should any of these become widely used, it will be
worthwhile to evolve KQML so that its key ideas the collec-
tion of reserved performatives, the support for a variety of
information exchange protocols, the need for an information
based directory service can enhance these new information
exchange languages.

Additional information on KQML, including papers, lan-
guage specifications, access to APIs, information on email
discussion lists, etc, can be obtained via the world wide web
as http://www.cs.umbc.edu/kqml/ and via ftp from ftp.cs.-
umbc . edu in pub/kqml/.

References

[1] Yigal Arens. Planning and reformulating queries for
semantically-modeled multidatabase systems. In First
International Conference on Information and Knowl-
edge Management, October 1992.

{2] Yigal Arens, Chin Chee, Chun-Nan Hsu, Hoh In, and
Craig A. Knoblock. Query processing in an informa-
tion mediator. In Proceedings of the ARPA/Rome Lab
1994 Knowledge- Based Planning and Scheduling Initia-
tive Workshop, February 1994.

[3] External Interfaces Working Group ARPA Knowledge
Sharing Initiative. Specification of the KQML agent-
communication language. Working paper. Available as
http://www.cs.umbc.edu/kqml/papers/kqml-spec.ps, De-
cember 1992.

(4] Marie Bienkowski, Marie desJardins, and Roberto Des-
imone. SOCAP: system for operations crisis action
planning. In Proceedings of the ARPA/Rome Lab 1994
Knowledge-Based Planning and Scheduling Initiative
Workshop, February 1994.

Mark Burstein, editor. Proceedings of the ARPA/Rome
Lab 1994 Knowledge-Based Planning and Scheduling
Initiative Workshop. Morgan Kuafmann Publishers,
Inc., February 1994.

5

—_

(6] Wes Chu and Hua Yang. Cobase: A cooperative query
answering system for database systems. In Proceed-
ings of the ARPA/Rome Lab 1994 Knowledge-Based
Planning and Scheduling Initiative Workshop, Febru-
ary 1994,

[7] M. Cutkosky, E. Engelmore, R. Fikes, T. Gruber,
M. Genesereth, and W. Mark. PACT: An experiment
in integrating concurrent engineering systems. IEEE
Computer, pages 28-38, January 1993.

[8] D. Kuokka et. al. Shade: Technology for knowledge-
based collaborative. In AAAI Workshop on Al in Col.-
laborative Design, 1993.

[9] J. McGuire et. al. Shade: Technology for knowledge-
based collaborative engineering. Journal of Concurrent
Engineering: Applications and Research (CERA), 1(2),
September 1993.

[10] William Mark et. al. Cosmos: A system for supporting
design negotiation. Journal of Concurrent Engineering:
Applications and Research (CERA), 2(3), 1994.

(11]) Tim Finin, Rich Fritzson, and Don McKay. A high-
level language and protocol to support intelligent agent
interoperability. In Workshop on Enabling Technologies
for Concurrent Engineering, April 1992.

[12] Tim Finin, Rich Fritzson, and Don McKay. A
knowledge query and manipulation language for in-
telligent agent interoperability. In Fourth Na-
tional Symposium on Concurrent Engineering, CE
& CALS Conference, June 14 1992. Available as
http://wuw.cs.umbc.edu/kqml/papers/cecals.ps.

[13] Tim Finin, Don McKay, Rich Fritzson, and Robin
McEntire. KQML: an information and knowledge
exchange protocol. In International Conference on
Building and Sharing of Very Large-Scale Knowi-
edge Bases, December 1993. A version of this pa-
per will appear in Kazuhiro Fuchi and Toshio Yokoi
(Ed.), "Knowledge Building and Knowledge Shar-
ing”, Ohmsha and IOS Press, 1994. Available as
http://www.cs.umbc.edu/kqml/papers/kbks .ps.

(14] Tim Finin, Charles Nicholas, and Yelena Yesha, editors.
Information and Knowledge Management, Ezpanding
the Definition of Database. Lecture Notes in Computer
Science 752. Springer-Verlag, 1993. (ISBN 3-540-57419-
0).

[15] M. Genesereth and R. Fikes et. al. Knowledge inter-
change format, version 3.0 reference manual. Technical
report, Computer Science Department, Stanford Uni-
versity, 1992.

[16] Michael R. Genesereth and Steven P. Katchpel. Soft-
warc agents. Communications of the ACM, 37(7):48-53,
147, 1994.

{17] Mike Genesereth. Designworld. In Proceedings of the
IEEE Conference on Robotics and Automation, pages
2,785-2,788. IEEE CS Press.

[18] Mike Genesereth. An agent-based approach to software
interoperability. Technical Report Logic-91-6, Logic
Group, CSD, Stanford University, February 1993.

[19] Matt Ginsberg. Knowledge interchange format: The
KIF of death. Al Magazine, 1991.

[20] Yannis Labrou and Tim Finin. A semantics approach
for KQML - a general purpose communication language
for software agents. In Third International Conference
on Information and Knowledge Management, Novem-
ber 1994. Available as http://www.cs.umbc.edu/kqml/-
papers/kqml-semantics.ps.

[21] Nancy Lehzer. The knowledge representation specifica-
tion language manual. Technical report, ISX Corpora-
tion, Thousand Oaks, California, 1994.

{22] Robert MacGregor and Raymond Bates. The LOOM
knowledge representation language. Technical Report
ISI/RS-87-188, USC/ISI, 1987. Also appears in Pro-
ceedings of the Knowledge-Based Systems Workshop
held in St. Louis, Missouri, April 21-23, 1987.

[23] M.Tenenbaum, J. Weber, and T. Gruber. Enterprise
integration: Lessons from shade and pact. In C. Petrie,
editor, Enterprise Integration Modeling. MIT Press,
1993.

[24] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil,
T. Senator, and W. Swartout. Enabling technology
for knowledge sharing. Al Magazine, 12(3):36-56, Fall
1991.

(25] Jefft Y-C Pan and Jay M. Tenenbaum. An intelli-
gent agent framework for enterprise integration. [EEE
Transactions on Systems, Man and Cybernetics, 21(6),
December 1991. (Special Issue on Distributed Al).

[26] Jon Pastor, Don McKay, and Tim" Finin. View-
concepts: Knowledge-based access to databases. In
First International Conference on Information and
Knowledge Management, Qctober 1992,

[27] R. Patil, R. Fikes, P. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The DARPA
knowledge sharing effort: Progress report. In Princi-
ples of Knowledge Representation and Reasoning: Pro-
ceedings of the Third International Conference, Novem-
ber 1992. Available as http://eww.cs.umbc.edu/kqml/-
papers/kr92.ps.

(28] R. Patil, R. Fikes, P. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The DARPA
knowledge sharing effort: Progress report. In B. Nebel,
C. Rich, and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning: Proc. of the
Third International Conference (KR’92), San Mateo,
CA, November 1992. Morgan Kaufmann.

[29] Gio Wiederhold, Peter Wegner, and Stefano Ceri. To-
ward megaprogramming. Communications of the ACM,
33(11):89-99, November 1992.

[30) David Wilkins. Practical Planning: Eztending the Clas-
sical AI Planning Paradigm. Morgan Kaufmann Pub-
lishers, Inc., San Mateo, CA., 1988.

Software Agents - Genesereth, Ketchpel (ResearchIndex) Page 1 of 2

View or download:
Sogg:f;;igr?;nﬁéggc:?t:{i é%@;_l_(g ai.univie.ac.at/%7Epaolo...agents.ps.qgz
aragorn.wirtschaft.. twareagents.ps.gz
Michael R. Genesereth, Steven P. Ketchpel wachau.ai.univie.ac.at/%...agents.ps.gz
Communications of the ACM Cached: PS.gz PS PDF DjVu Image Update Help
CiteSeer HomeSearch Bookmark Context From: ai.univie.ac.at/~paolo/lva/vu... (more)
TS Lt S i Related From: wachau.ai.univie.ac.at/~paolo/...
0 (Enter author homepages)
(Enter summary) Rate this article: 1 2 3 4 5 (best)

View Comments (0)

Abstract: this paper, we discuss these questions and describe some
emerging technologies that provide answers. In the final section, we mention some additional issues and
summarize the key points of the paper. (For more information on agent-based software engineering, see
[Genesereth 1989] and [Genesereth 1992). See also [Shoham 1993] for a description of a variation of agent-
based software engineering known as "agent-oriented programming".) 2. Agent Communication Language

(Update)

Context of citations to this paper: More

...among events, actions, and goals. Moreover, knowledge can be exchanged with other agents, or
increased by some inferential activity [21]. Although mobility is not the most characterizing aspect of these
entities [22] there is a tendency to blend this notion of intelligent...

...dialogue among the agents involved. All these elements provide for effective knowledge exchange among
agents in heterogeneous environments [2].The abstract FIPA architecture [3] provides mechanisms that can
be used to enact the communication process among heterogeneous agent...

Cited by: More

The Eva Teleteaching Project - The - Concept And The (Correct)
infoSleuth: Agent-Based Semantic Integration of.. - Bayardo, Jr.. (1997) (Correct)

Similar documents (at the sentence level): More
42.8%: A Distributed and Anonymous Knowledge Sharing Approach to.. - Michael Genesereth (1994) (Correct)

0.2: Software Agents and Intelligent Object Fusion - Nourani (1997) (Correct)

Similar documents based on text: More All

Related documents from co-citation: More All

26: KQML as an Agent Communication Language - Finin - 1994

22: Agents that reduce work and information overload (context) - Maes - 1994

17: Enabling technology for knowledge sharing (context) - Neches, Fikes et al. - 1991
BibTeX entry: (Update)

Genesereth, M. R., and Ketchpel, S. P., "Software Agents," Communication of the ACM, Vol. 37, No. 7 July 1994.
http://citeseer.ist.psu.edu/genesereth94software.htm! More

Garticle{ genesereth97software,

http://citeseer.ist.psu.edu/genesereth94software.html 4/14/04

Software Agents - Genesereth, Ketchpel (ResearchIndex) Page 2 of 2

author = "Michael R. Genesereth and Steven P. Ketchpel”,
title = "Software Agents",

journal = "Communications of the {ACM}",

volume = "37",

number = "7",
year = "1997",
url = "citeseer.ist.psu.edu/genesereth94software.html"” }

Citations (may not include all citations):

396 Agent-Oriented Programming (context) - Shoham - 1993

187 Enabling Technology for Knowledge Sharing (context) - Neches, Fikes et al. - 1991

185 Negotiation as a Metaphor for Distributed Problem Solving (context) - Davis, Smith - 1983

159 A Market-Oriented Programming Environment and its Applicatio.. - Wellman - 1993

92 Ontolingua: A Mechanism to Support Portable Ontologies - Gruber - 1991

68 Deals Among Rational Agents (context) - Rosenschein, Genesereth - 1985

44 A Decision- Theoretic Approach to Coordinating Multiagent In.. (context) - Gmytrasiewicz, Durfee et al. - 1991
38 An Overview of KQML: A Knowledge Query and Manipulation Lang.. (context) - Finin, Wiederhold - 1991
35 Agents Contracting Tasks in Non-Collaborative Environments {context) - Kraus - 1993

31 The Clarke Tax as a consensus mechanism among automated agen.. (context) - Ephrati, Rosenschein -
1991

22 Understanding the Role of Negotiation in Distributed Search .. - Lander, Lesser - 1993

14 An Agent-Based Approach to Software Interoperability (context) - Genesereth - 1992

10 Knowledge Interchange Format Version 3 Reference Manua! - Genesereth, Fikes - 1992

6 The Architecture of Future Information Systems (context) - Wiederhold - 1989

4 PACT: An Experiment in Integrated Engineering Systems (context) - Cutkosky - 1993

4 A Proposal for Research on Informable Agents (context) - Genesereth - 1989

3 Mechanisms for Automated Negotiation among Autonomous Agents (context) - Zlotkin - 1994

Year of Publication of Citing Articles

n
25
5 i
-
: 20
+
o 15 [—
-
o 18 |-
&
g S
2 2] 1 1 1 1 | 1 1 1 I 1 I 1 l
1994 1995 1996 1997 1998 1999 2000 2901 2002 2003

Year

The graph only includes citing articles where the year of publication is known.

Documents on the same site (http://www.ai.univie.ac.at/~paolo/lva/vu-sal/): More

COLLAGEN: When Agents Collaborate with People - Rich, Sidner (1996) (Correct)
Letizia: An Agent That Assists Web Browsing - Lieberman (1995) (Correct)

Online articles have much greater impact More about CiteSeer.IST Add search form to your site Submit
documents Feedback

CiteSeer.IST - Copyright NEC and IST

http://citeseer.ist.psu.edu/genesereth94software.html 4/14/04

Software Agents

Michael R. Genesereth Steven P. Ketchpel
Logic Group Computer Science Department
Computer Science Department Stanford University

Stanford University

1. Introduction

The software world is one of great richness and diversity. Many thousands of software
products are available to users today, providing a wide variety of information and services
in a wide variety of domains. While most of these programs provide their users with
significant value when used in isolation, there is increasing demand for programs that can
interoperate — to exchange information and services with other programs and thereby solve
problems that cannot be solved alone.

Part of what makes interoperation difficult is heterogeneity. Programs are written
by different people, at different times, in different languages; and, as a result, they often
provide different interfaces. The difficulties created by heterogeneity are exacerbated by
dynamics in the software environment. Programs are frequently rewritten; new programs
are added; old programs removed.

Agent-based software engineering was invented to facilitate the creation of software
able to interoperate in such settings. In this approach to software development, application
programs are written as software agents, i.e. software “components” that communicate
with their peers by exchanging messages in an expressive agent communication language.

Agents can be as simple as subroutines; but typically they are larger entities with
some sort of persistent control (e.g. distinct control threads within a single address space,
distinct processes on a single machine, or separate processes on different machines).

The salient feature of the language used by agents is its expressiveness. It allows
for the exchange of data and logical information, individual commands and scripts (i.e.
programs). Using this language, agents can communicate complex information and goals,
directly or indirectly “programming” each other in useful ways. '

Agent-based software engineering is often compared to object-oriented programming.
Like an “object”, an agent provides a message-based interface independent of its internal
data structures and algorithms. The primary difference between the two approaches lies
in the language of the interface. In general object-oriented programming, the meaning of a
message can vary from one object to another. In agent-based software engineering, agents
use a common language with an agent-independent semantics.

The concept of agent-based software engineering raises a number of important ques-
tions.

(1) What is an appropriate agent communication language?
(2) How do we build agents capable of communicating in this language?

(3) What communication “architectures” are conducive to cooperation?

1

In the next three sections of this paper, we discuss these questions and describe some
emerging technologies that provide answers. In the final section, we mention some ad-
ditional issues and summarize the key points of the paper. (For more information on
agent-based software engineering, see [Genesereth 1989] and [Genesereth 1992]. See also
[Shoham 1993] for a description of a variation of agent-based software engineering known
as “agent-oriented programming”.)

2. Agent Communication Language

Communication language standards facilitate the creation of interoperable software by
decoupling implementation from interface. So long as programs abide by the details of the
standards, it does not matter how they are implemented. Today, standards exist for a wide
variety of domains. For example, electronic mail programs from different vendors manage
to interoperate through the use of mail standards like SMTP. Disparate graphics programs
interoperate using standard formats like GIF and JPEG. Text formatting programs and
printers interoperate using languages like PostScript.

Unfortunately, problems arise when it becomes necessary for programs that use one
language to interoperate with programs that use a different language. To begin with, there
can be inconsistencies in the use of syntax or vocabulary. One program may use a word
or expression to mean one thing while another program uses the same word or expression
to mean something entirely different. At the same time, there can be incompatibilities.
Different programs may use different words or expressions to say the same thing.

Agent-based software engineering attacks these problems by mandating a universal
communication language, one in which inconsistencies and arbitrary notational variations
are eliminated. There are two popular approaches to the design of such a language — the
procedural approach and the declarative approach.

The procedural approach is based on the idea that communication can be best mod-
elled as the exchange of procedural directives. Scripting languages (such as TCL, Apple
Events, and Telescript) are based on this approach. They are both simple and powerful.
They allow programs to transmit not only individual commands but entire programs, thus
implementing delayed or persistent goals of various sorts. They are also (usually) directly
and efficiently executable.

Unfortunately, there are disadvantages to purely procedural languages. For one, devis-
ing procedures sometimes requires information about .the recipent that may not be available
to the sender. Secondly, procedures are unidirectional. Much information that agents must
share should be usable in both directions — to compute quantity a from quantity b at one
time and to compute quantity b from quantity a at another. Most significantly, scripts are
difficult to merge. This is no problem so long as all communication is one-on-one. However,
things become more difficult when an agent receives multiple scripts from multiple agents
that must be run simultaneously and may interfere with each other. Merging procedural
information is much more difficult than merging declarative specifications or mixed mode
information (like condition-action rules).

In contrast with this procedural approach, the declarative approach to language de-
sign is based on the idea that communication can be best modelled as the exchange of
declarative statements (definitions, assumptions, and the like). To be maximally useful, a

2

declarative language must be sufficiently expressive to communicate information of widely
varying sorts (including procedures). At the same time, the language must be reasonably
compact; it must ensure that communication is possible without excessive growth over
specialized languages. As an exploration of this approach to communication, researchers
in the ARPA Knowledge Sharing Effort [Neches] have defined the components of an agent
communication language (called ACL) that satisfies these needs.

ACL can best be thought of as consisting of three parts — its vocabulary, an “inner
language” called KIF (short for Knowledge Interchange Format), and an “outer” language
called KQML (short for Knowledge Query and Manipulation Language). An ACL message
is a KQML expression in which the “arguments” are terms or sentences in KIF formed
from words in the ACL vocabulary.

The vocabulary of ACL is listed in a large and open-ended dictionary of words appro-
priate to common application areas [Gruber]. Each word in the dictionary has an English
description for use by humans in understanding the meaning of the word; and each word
has formal annotations (written in KIF') for use by programs. The dictionary is open-ended
to allow for the addition of new words within existing areas and in new application areas.

Note that the existence of such a dictionary does not imply that there is only one way
of describing an application area. Indeed, the dictionary can contain multiple ontologies
for any given area. For example, it contains vocabulary for describing three dimensional
geometry in terms of polar coordinates, rectangular coordinates, cylindrical coordinates,
etc. A program can use whichever ontology is most convenient. The formal definitions of
the words associated with any one of these ontologies can then be used by system programs
in translating messages using one ontology into messages using other ontologies.

KIF is a prefix version of first order predicate calculus, with various extensions to
enhance its expressiveness. It provides for the encoding of simple data, constraints, nega-
tions, disjunctions, rules, quantified expressions, metalevel information, and so forth. See
figure 1 for a brief summary of KIF.

While it is possible to design an entire communication framework in which all mes-
sages take the form of KIF sentences, this would be efficient. Because of the contextual
independence of KIF’s semantics, each message would have to include any implicit infor-
mation about the sender, the receiver, the time of the message, message history, and so
forth. The efficiency of communication can be enhanced by providing a linguistic layer in
which context is taken into account. This is the function of KQML. See figure 2 for a brief
summary.

ACL has been used in several large-scale demonstrations of software interoperation,
and the results are promising. Full specifications are available, and parts of the language
are making their way through various standards organizations. Several start-up companies
are proposing to offer commercial products for processing ACL; and a number of established
computer system vendors are looking at ACL as a possible language for communication
among heterogeneous systems.

As of this writing, it is not clear which of these two approaches will succeed. The
declarative approach seems inevitable in the long run. However, scripting languages are
likely to be popular in the short run because of their familiarity; and so the ultimate agent
communication language may end up looking more like a scripting language than ACL.

3

Figure 1 — Knowledge Interchange Format

KIF [Genesereth, Fikes, et al.] is a prefix version of the language of first order predicate
calculus with various extensions to enhance its expressiveness.

First and foremost, KIF provides for the expression of simple data. For example, the
sentences shown below encode 3 tuples in a personnel database. The first argument in
each is the social security number of an individual, the second argument is the department
within which the individual works, and the third argument is the individual’s salary.

(salary 015-46-3946 widgets 72000)
(salary 026-40-9152 grommets 36000)
(salary 415-32-4707 fidgets 42000)

More complicated pieces of information can be expressed through the use of complex
terms. For example, the following sentences states that one chip is larger than another.

(> (% (width chipl) (length chip1l)) (* (width chip2) (length chip2)))

KIF includes a variety of logical operators to assist in the encoding of logical infor-
mation (such as negations, disjunctions, rules, quantified formulas, and so forth). The
expression shown below is an example of a complex sentence in KIF. It asserts that the
number obtained by raising any real-number ?x to an even power ?n is positive.

(=> (and (real-number ?7x) (even-number ?n)) (> (expt ?x 7n) 0))

One of the distinctive features of KIF is its ability to encode knowledge about knowl-
edge, using the ¢ and , operators and related vocabulary. For example, the following
sentence asserts that agent Joe is interested in receiving triples in the salary relation. The
use of commas signals that the variables should not be taken literally. Without the com-
mas, this sentence would say that agent 1 is interested in the sentence (salary ?x 7y
?z) instead of its instances.

(interested joe ‘(salary ,?x ,?y ,7z))

KIF can also be used to describe procedures, i.e. to write programs or scripts for
agents to follow. Given the prefix syntax of KIF, such programs resemble Lisp or Scheme.
The following is an example of a three step procedure written in KIF. The first step ensures
that there is a fresh line on the standard output stream; the second step is to print Hello!
to the standard output stream; the final step is to add a carriage return to get to a new
fresh line.

(progn (fresh-line t) (print "Hello!") (fresh-line t))

The semantics of the KIF core (KIF without rules and definitions) is similar to that
of first order logic. There is an extension to handle nonstandard operators (like ¢ and ,),
and there is a restriction to models that satisfy various axiom schemata (to give meaning
to the basic vocabulary in the format). Despite these extensions and restrictions, the core
language retains the fundamental characteristics of first order logic, including compactness
and the semidecidability of logical entailment.

4

Figure 2 — Knowledge Query and Manipulation Language

As used in ACL, KQML messages are similar to KIF expressions. Each message is a
list of components enclosed in matching parentheses. The first word in the list indicates
the type of communication. The subsequent entries are KIF expressions appropriate to
that communication, in effect the “arguments”.

Intuitively, each message in KQML is one piece of a dialog between between the sender
and the receiver, and KQML provides support for a wide variety of such dialog types.

The expression shown below is the simplest possible KQML dialog. In this case, there
is just one message — a simple notification. The sender is conveying the enclosed sentence
to the receiver. In general, there is no expectation on the sender’s part about what use
the receiver will make of this information.

A to B: (tell (> 3 2))

The following dialog is a little more interesting. In this case, the first message is a
request for the receiver to execute the operation of printing a string to its standard i/o
stream. The second message tells the sender that the request has been satisfied.

A to B: (perform (print "Hello!" t))
B to A: (reply done)

In the dialog shown below, the sender is asking the receiver a question in an ask-if
message. The receiver then sends the answer to the original sender in a reply message.

A to B: (ask-if (> (size chipl) (size chip2)))
B to A: (reply true)

In the following case, the sender asks the receiver to send it a notification whenever
it receives information about the position of an object. The receiver sends it three such
sentences, after which the original sender cancels the service.

A to B: (subscribe (position ?x ?r 7c))
B to A: (tell (position chipl 8 10))

B to A: (tell (position chip2 8 46))

B to A: (tell (position chip3 8 64))

A to B: (unsubscribe (position ?x ?r 7c))

In addition to simple notifications, commands, questions, and subscriptions, as illus-
trated here, KQML also contains support for delayed and conditional operations, requests
for bids, offers, promises, and so forth.

(For those who have seen a little of KQML and wonder where the packages went,
it is worth noting that, in addition to the communication layer described here, KQML
includes yet another linguistic layer to support the transmission of messages among agents
operating in different processes. This layer characterizes the additional information that
must be conveyed in communication protocols between distributed systems, such as email
and TCP connections. The details of this “package” layer are irrelevant to the discussion
in this paper; see the KQML document for more information.)

3. Agents

The criterion for agenthood is a behavioral one. An entity is a software agent if
and only if it communicates correctly in an agent communication language like ACL. This
means that the entity must be able to read and write ACL messages, and it means that the
entity must abide by the behavioral constraints implicit in the meanings of those messages.

The specific constraints associated with a message derive from the content of that
message and general principles of agent behavior. For example, there is veracity (an agent
must tell the truth), autonomy (an agent may not constrain another agent to perform
a service unless the other agent has advertised its willingness to accept such a request),
commitment (if an agent advertises a willingness to perform a service, then it is obliged to
perform that service when asked to do so), and so forth.

From a theoretical perspective, it is interesting to note that all of these principles
can be derived from the single principle of veracity. In other words, if all agents are
constrained to tell the truth, then autonomy, commitment, etc. all follow. To many
people, the principle of veracity sounds too strong; but it is not difficult to achieve. An
agent can always state its own inputs, outputs, and definitions with confidence; and it can
nest conjectures inside of statements about its “beliefs”. Unfortunately, a full account of
this issue is beyond the scope of this paper; and, interesting as it may be theoretically, it
has only indirect practical value.

For our purposes here, it is sufficient to say that the use of ACL brings with it
behavioral constraints. However, this leaves opens a wide range of possibilities. At one
extreme, we can imagine “perfect” agents that retain all of the information they receive
and act in accordance with the logical consequences of this information. At the other
extreme, we can imagine simple agents, like calculators, that answer arithmetic problems
and ignore everything else. More powerful agents utilize a larger portion of ACL; less
powerful agents use a smaller subset. All are agents, so long as they use the language
correctly.

Given a clear statement of the language and the behavioral principles that agents must
satisfy, it is straightforward to write programs that behave correctly. But what about all
of the programs that have already been written, our so-called “legacy” software? Are there
any standard techniques for converting such programs into software agents? In work thus
far, a number of different approaches have been taken. See figure 3.

Transducer Wrapper Rewrite

Figure 3 - Three approaches to agentification

One approach (the leftmost diagram in figure 3) is to implement a transducer that
mediates between an existing program and other agents. The transducer accepts messages
from other agents, translates them into the program’s native communication protocol, and
passes those messages to the program. It accepts the program’s responses, translates into
ACL, and sends the resulting messages on to other agents.

This approach has the advantage that it requires no knowledge of the program other
than its communication behavior. It is, therefore, especially useful for situations in which
the code for the program is unavailable or too delicate to modify.

This approach also works for other types of resources, such as files and people. It is
a simple matter to write a program to read or modify an existing file with a specialized
format and thereby provide access to that file via ACL. Similarly, it is possible to provide
a graphical user interface for a person that allows that person to interact with the system
in a specialized graphical language, which is then converted into ACL, and vice versa.

A second approach to dealing with legacy software (the middle diagram in figure 3)
is to implement a wrapper, i.e. inject code into a program to allow it to communicate
in ACL. The wrapper can directly examine the data structures of the program and can
modify those data structures. Furthermore, it may be possible to inject calls out of the
program so that it can take advantage of externally available information and services.

This approach has the advantage of greater efficiency than the transduction approach,
since there is less serial communication. It also works for cases where there is no interpro-
cess communication ability in the original program. However, it requires that the code for
the program be available.

The third and most drastic approach to deahng with legacy software (the rightmost
diagram in figure 3) is to rewrite the original program. The advantage of this approach
is that it may be possible to enhance its efficiency or capability beyond what would be
possible in either the transduction or wrapping approaches.

The best examples of this approach come from the engineering domain. Many auto-
mated design programs work to completion before communicating with other programs.
For example, the output of a logic synthesis program is passed as input to a printed circuit
board layout and routing program,; its output is passed to an assembly planning program;
and so forth. Recent work in concurrent engineering suggests that there is much advantage
to be gained by writing programs that communicate partial results in the course of their
activity and that accept partial results and feedback from other programs. By communi-
cating a partial result and getting early feedback, a program can save work on what may
turn out to be an unworkable alternative.

4. Architecture of Multi-Agent Systems

Once we have a language and the ability to build agents, there remains the question
of how these agents should be organized to enhance collaboration. Two very different
approaches have been explored: direct communication (in which agents handle their own
coordination) and assisted coordination (in which agents rely on special system programs
to achieve coordination).

The advantage of direct communication is that it does not rely on the existence,
capabilities, or biases of any other programs. Two popular architectures for direct com-

7

munication are the contract-net approach and specification sharing.

In the contract net approach to interoperation [Davis and Smith 1983], agents in
need of services distribute requests for proposals to other agents. The recipients of these
messages evaluate those requests and submit bids to the originating agents. The originators
use these bids to decide which agents to task and then award contracts to those agents.

In the specification sharing approach to interoperation, agents supply other agents
with information about their capabilities and needs; and these agents can then use this
information to coordinate their activities. The specification sharing approach is often more
efficient than the contract net approach because it decreases the amount of communication
that must take place.

One disadvantage of direct communication is cost. So long as the number of agents is
small, this is not a problem. But, in a setting like the Internet, with millions of programs,
the cost of broadcasting bids or specifications and the consequential processing of those
messages is prohibitive. In this case, the only alternative is to organize the agents in some
way that avoids such broadcasts.

Another disadvantage is implementational complexity. In the direct communication
schemes, each agent is responsible for negotiating with other agents and must contain all of
the code necessary to support this negotiation. If only these capabilities could be provided
by the system, this would lessen the complexity of application programs.

A popular alternative to direct communication that eliminates both of these disadvan-
tages is to organize agents into what is often called a federated system. Figure 4 illustrates
the structure of such a system in the simple case in which there are just three machines, one
with three agents and two with two agents apiece. As suggested by the diagram, agents do
not communicate directly with each other. Instead, they communicate only with system
programs called facilitators, and facilitators communicate with each other. (The concept
of a facilitator [Genesereth 1992] derives from and generalizes the concept of a mediator
[Wiederhold].)

] Facilitator : Facilitator '

Facilitator

Figure 4 - Federated system

In a federated system, agents use ACL (in practice, a restricted subset of ACL) to
document their needs and abilities for their local facilitators. In addition to this metalevel

8

information, they also send application-level information and requests to their facilitators
and accept application-level information and requests in return. Facilitators use the docu-
mentation provided by these agents to transform these application-level messages and route
them to the appropriate places. In effect, the agents form a “federation” in which they
surrender their autonomy to their facilitators and the facilitators take the responsibility
for fulfilling their needs.

The concepts of system services in support of software interoperation is not new here.
For example, directory assistance programs facilitate software interoperation by providing
a way for programs to discover which programs can handle which requests and which
programs are interested in which pieces of information. Distributed object managers (like
CORBA, OLE, DSOM) provide location transparency for object-oriented systems, routing
messages to objects without requiring senders to know the locations of those objects.
Automatic brokers (like the Publish and Subscribe capabilities on the Macintosh, DDE,
BMS, Tooltalk, etc.) combine these capabilities — they not only compute the appropriate
programs to receive messages but forward those messages, handle any problems that arise,
and, where appropriate, return the answers to the original senders.

The primary difference between these approaches to software interoperation and agent-
based software engineering lies in the sophistication of the processing done by facilitators.
Using ACL, agents can express their needs and capabilities more accurately than in pattern-
based metalanguages; and facilitators can use this added information to be more discrimi-
nating in routing messages. In order to deal with notational incompatibilities, facilitators
can translate messages from one vocabulary to another using definitions supplied by agents
or retrieved from the ACL dictionary. In so doing, they can decompose messages into sub-
messages and send them to different agents. When necessary, they can combine multiple
messages. In some cases, this assistance can be rendered interpretively (with messages
going through the facilitators); in other cases, it can be done in one-shot fashion (with the
facilitators setting up specialized links between individual agents and then stepping out of
the picture).

In order to provide these capabilities, current implementations of facilitators take
advantage of automated reasoning technology developed in the Artificial Intelligence and
Database communities. Powerful search control techniques are used to enhance normal
message-processing performance; and automatic generation of message routing programs
and pairwise translators is used for cases requiring greater efficiency.

Even with these enhancements, these implementations consume more time in the
worst case than simpler processing techniques (like the pattern matching method used in
BMS). This is sometimes acceptable, especially when the alternative is no interoperation
at all. However, in time critical applications (such as machine control), the extra cost can
be prohibitive.

5. Summary

The agent-based approach to software interoperation described here has been devel-
oped into a practical technology and has been put to use in a variety of applications
necessitating interoperation (e.g. concurrent engineering [Cutkosky|, database integration,
and so forth) and is being used at multiple institutions in the construction of software for

9

the national information infrastructure.

In order to concentrate on the central issues in agent-based software engineering, we
have ignored many key problems in our presentation, such as synchronization, security,
payment for services, crash recovery, inconsistencies in program specifications, and so
forth. Although partial solutions to these problems exist, further work is needed.

In our treatment so far, we have assumed that there is sufficient common interest
among the agents that they will frequently volunteer to help each other and receive no
direct reward for their labor. As the Internet becomes increasingly commercialized, we
envision a world where agents act on behalf of their creators to make a profit. Agents will
seek payment for services provided and may negotiate with each other to maximize their
expected utility, which might be measured in a form of electronic currency.

These problems mark the intersection of economics and distributed artificial intel-
ligence (DAI). A number of researchers in DAI are using tools developed in economics
and game theory to evaluate multi-agent interactions [Zlotkin 1994], [Rosenschein and
Genesereth 1985|, [Gmytrasiewicz, Durfee and Wehe 1991]. Depending on the prevailing
conditions of the situation, any one of a number of protocols might be applicable. In the
simplest case, the agent requesting a service offers a specific reward for the completion of a
task. The agent that performs the task receives the payment. In more complex scenarios,
a task may be completed by a set of agents, who need to negotiate how to divide the
reward. Dividing the total amount equally might not be fair if the agents made different
contributions. If there are many agents (or sets of agents) that may complete the task, the
requestor might try to minimize its cost by seeking multiple bids or holding an auction.
There are a number of alternatives (e.g. English Ascending Auction, Dutch Descending
Auction, Sealed-Bid, Vickery’s Second Price) that have different properties and may be
applicable or preferred in different situations. The WALRAS system [Wellman 1993] is an
example of market mechanics being used to coordinate agents.

A further goal of DAI research is to obviate the need for the truth-telling assumption.
If the selected protocols are truth dominant, agents tell the truth out of self-interest, rather
than by fiat. This makes the system as a whole more resistant to a scheming agent that
might try to exploit other agents by lying. The next step in this research thread is to create
protocols that are resistant to the efforts of groups of agents that attempt to manipulate
the system for their own benefit.

In this paper, we have taken a brief look at how agent technology can be used to pro-
mote software interoperation. Our long-range vision is one in which any system (software
or hardware) can interoperate with any other system, without the intervention of human
users or their programmers. Although many problems remain to be solved, we believe
that the introduction of agent technology will be an important step toward achieving this
vision.

10

References

1. Cutkosky, M. et al. PACT: An Experiment in Integrated Engineering Systems, Com-
puter 26, 1(1993), 28-37.

2. Davis, R., and Smith, R. G. Negotiation as a Metaphor for Distributed Problem Solving,
in Artificial Intelligence 20, 1(1983), 63-109.

3. Ephrati, E. and Rosenschein, J. S. The Clarke Tax as a consensus mechanism among
automated agents”. In Proceedings of the Ninth National Conference on Artificial Intelli-
gence (Anaheim, California 1991). AAAI Press, Menlo Park, CA, pp. 173-178.

4. Finin, T., and Wiederhold, G. An Overview of KQML: A Knowledge Query and Manipu-
lation Language, available through the Stanford University Computer Science Department,
1991.

5. Genesereth, M. R., Fikes, R. E. et al. Knowledge Interchange Format Version 3 Refer-
ence Manual, Logic-92-1, Stanford University Logic Group, 1992.

6. Genesereth, M. R. A Proposal for Research on Informable Agents, Logic-89-9, Stanford
University Logic Group, June 1989.

7. Genesereth, M. R. An Agent-Based Approach to Software Interoperability, In Proceed-
ings of the DARPA Software Technology Conference, 1992.

8. Gmytrasiewicz, P. J., Durfee, E. H. and Wehe, D. K. A Decision- Theoretic Approach
to Coordinating Multiagent Interactions. In Proceedings of the Twelfth International Joint
Conference On Artificial Intelligence (Sydney, Australia 1991). International Joint Con-
ferences on Artificial Intelligence, Inc. pp. 62-68.

9. Gruber, T. Ontolingua: A Mechanism to Support Portable Ontologies, KSL-91-66,
Stanford Knowledge Systems Laboratory, 1991.

10. Kraus, S. Agents Contracting Tasks in Non-Collaborative Environments. In Proceed-
ings of the Eleventh National Conference on Artificial Intelligence (Washmgton DC 1993).
AAALI Press, Menlo Park, CA. pp. 243-248.

11. Lander, S. E. and Lesser, V. R. Understanding the Role of Negotiation in Distributed
Search Among Heterogeneous Agents. In Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence (Chambery, France 1993). International Joint Con-
ferences on Artificial Intelligence, Inc. pp. 438-444.

12. Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., and Swartout, W.
Enabling Technology for Knowledge Sharing, AI Magazine 12, 3(1991), 36-56.

13. Rosenschein, J. S. and Genesereth, M.R. Deals Among Rational Agents. In Proceed-

11

ings of the Ninth International Joint Conference on Artificial Intelligence (Los Angelos,
California 1985). AAAI Press, Menlo Park, CA, pp. 91-99.

14. Shoham, Y. Agent-Oriented Programming. Artificial Intelligence 60. 1(1993), 51-92.

15. Wellman, M. P. A Market-Oriented Programming Environment and its Application to
Distributed Multicommodity Flow Problems, Journal of Artificial Intelligence Research 1
(1993), 1-23.

16. Wiederhold, G. The Architecture of Future Information Systems, Stanford University
Computer Science Department, 1989.

17. Zlotkin, G. Mechanisms for Automated Negotiation among Autonomous Agents. Ph.D.
Dissertation. Hebrew University. February 1994.

12

"Software Agents - Genesereth, Ketchpel (ResearchIndex) Page 1 of 2

View or download:

Software Agents (1994) (Make ai.univie.ac.at/%7Epaolo...agents.ps.qz

~ Corrections) (153 citations) aragorn.wirtschaft...twareagents.ps.gz
Michael R. Genesereth, Steven P. Ketchpel wachau.ai.univie.ac.at/%...agents.ps.gz
Communications of the ACM Cached: PS.gz PS PDF DjVu Image Update Help
CiteSeer Home/Search Bookmark Context From: ai.univie.ac.at/~paolo/lva/vu... (more)
St Lt s Bagin Uy Related From: wachau.ai.univie.ac.at/~paolo/...
= (Enter author homepages)
(Enter summary) Rate this article: 1 2 3 4 5 (best)

View Comments (0)

Abstract: this paper, we discuss these questions and describe some
emerging technologies that provide answers. In the final section, we mention some additional issues and
summarize the key points of the paper. (For more information on agent-based software engineering, see
[Genesereth 1989] and [Genesereth 1992]). See also [Shoham 1993] for a description of a variation of agent-
based software engineering known as "agent-oriented programming".) 2. Agent Communication Language

(Update)

Context of citations to this paper: More

...among events, actions, and goals. Moreover, knowledge can be exchanged with other agents, or
increased by some inferential activity [21]. Although mobility is not the most characterizing aspect of these
entities [22] there is a tendency to blend this notion of intelligent...

...dialogue among the agents involved. All these elements provide for effective knowledge exchange among
agents in heterogeneous environments [2].The abstract FIPA architecture [3] provides mechanisms that can
be used to enact the communication process among heterogeneous agent...

Cited by: More

The Eva Teleteaching Project - The - Concept And The (Correct)
InfoSleuth: Agent-Based Semantic Integration of.. - Bayardo, Jr.. (1997) (Correct)

Similar documents (at the sentence level): More
42.8%: A Distributed and Anonymous Knowledge Sharing Approach to.. - Michael Genesereth (1994) (Correct)

0.2. Software Agents and Intelligent Object Fusion - Nourani (1997) (Correct)

Similar documents based on text: More All

0.1: The Networked Information Economy: Applied And Theoretical.. - And The (Correct)
0.1 Towards Secure Mediation - Biskup, Flegel, Karabulut (1998) (Correct)

Related documents from co-citation: More All
26: KQML as an Agent Communication Language - Finin - 1994

22: Agents that reduce work and information overload (context) - Maes - 1994
17. Enabling technology for knowledge sharing (context) - Neches, Fikes et al. - 1991

BibTeX entry: (Update)

Genesereth, M. R., and Ketchpel, S. P., "Software Agents," Communication of the ACM, Vol. 37, No. 7 July 1994.
http://citeseer.ist.psu.edu/genesereth94software.html More

@Garticle{ genesereth97software,

http://citeseer.ist.psu.edu/genesereth94software.html 4/14/04

*Software Agents - Genesereth, Ketchpel (ResearchIndex) Page 2 of 2

author = "Michael R. Genesereth and Steven P. Ketchpel",

title = "Software Agents"”,
journal = "Communications of the {ACM}",
volume = "37",

number = "7",
year = "1997",
url = "citeseer.ist.psu.edu/genesereth9%4software.html" }

Citations (may not include all citations):

396 Agent-Oriented Programming (context) - Shoham - 1993

187 Enabling Technology for Knowledge Sharing (context) - Neches, Fikes et al. - 1991

185 Negotiation as a Metaphor for Distributed Problem Salving (context) - Davis, Smith - 1983

159 A Market-Oriented Programming Environment and its Applicatio.. - Wellman - 1993

92 Ontolingua: A Mechanism to Support Portable Ontologies - Gruber - 1991

68 Deals Among Rational Agents (context) - Rosenschein, Genesereth - 1985

44 A Decision- Theoretic Approach to Coordinating Multiagent In.. (context) - Gmytrasiewicz, Durfee et al. - 1991
38 An Qverview of KQML: A Knowledge Query and Manipulation Lang.. (context) - Finin, Wiederhold - 1991
35 Agents Contracting Tasks in Non-Collaborative Environments (context) - Kraus - 1993

31 The Clarke Tax as a consensus mechanism among automated agen.. (context) - Ephrati, Rosenschein -
1991

22 Understanding the Role of Negotiation in Distributed Search .. - Lander, Lesser - 1993

14 An Agent-Based Approach to Software Interoperability (context) - Genesereth - 1992

10 Knowledge Interchange Format Version 3 Reference Manual - Genesereth, Fikes - 1992

6 The Architecture of Future Information Systems (context) - Wiederhold - 1989

4 PACT: An Experiment in Integrated Engineering Systems (context) - Cutkosky - 1993

4 A Proposal for Research on Informable Agents {context) - Genesereth - 1989

3 Mechanisms for Automated Negotiation among Autonomous Agents (context) - Zlotkin - 1994

Year of Publication of Citing Articles

"
es
5 I
z 20 -
»
o 115} | [r———
L
o 18 |-
o
g S
2 8) 1] 1 1] 2]] 1 [)]
1994 1995 1996 1997 1998 1999 20068 20a1 2862 2083

Year

The graph only includes citing articles where the yeér of publication is known.

Documents on the same site (http://www.ai.univie.ac.at/~paolo/iva/vu-sa/): More
INTELLIGENT AGENTS ON THE INTERNET: Fact, Fiction, and Forecast - Etzioni, Weld (1995) (Correct)

Letizia: An Agent That Assists Web Browsing - Lieberman (1995) (Correct)

Online articles have much greater impact More about CiteSeer.IST Add search form to your site Submit
documents Feedback

CiteSeer.IST - Copyright NEC and IST

http://citeseer.ist.psu.edu/genesereth94software.html 4/14/04

* *Computer and Information Science Papers CiteSeer Publications ResearchIndex Page 1 of 1

Scientific Literature Digital Library

Home Submit Documents Statistics About Feedback Help

|Agent Communication Langauge |

Searepociments) ccaichleitations)
Documents indexed Citations made by
by CiteSeer.IST indexed documents

Copyright NEC and IST | Privacy Policy | OAl Compliance

Announcements

‘Research 45T NEC

http://citeseer.ist.psu.edw/ 4/14/04

Search Results Page 1 of 2

IEEE HOME | SEARGH IEEE | SHOP | WEB ACCOUNT | GCONTACT IEEE @'EEE

Membership Publications/Services Standards Conferences Careers/Jobs

(ol

IEEE Xplore* 5
4 United States Patent and Trademark Office La

RELEASE 1.6 =0
Help FAQ Terms IEEE Peer Review |Quick Links » Sei
Welcome to IEEE Xplore®|
(O Home Your search matched 5 of 1024576 documents.
(O~ What Can A maximum of 500 results are displayed, 15 to a page, sorted by Relevanc
I Access? Descending order.
(O Log-out

Refine This Search:

Tavles of Contents You may refine your search by editing the current search expression or enteri
Journals new one in the text box.

& Magazines [multiagent <and> kqml] I

g?ggg&?‘?gs [CI Check to search within this result set

(- standards

QI

Results Key:
JNL = Journal or Magazine CNF = Conference STD = Standard

(O~ By Author
(- Basic 1 Toward an open virtual market place for mobile agents
(O~ Advanced Esmabhi, L.; Dini, P.; Bernard, J.C.;
Enabling Technologies: Infrastructure for Collaborative Enterprises, 1999. (W
ICE '99) Proceedings. IEEE 8th International Workshops on , 16-18 June 199¢

Pages:279 - 286
O Join IEEE

(O Establish IEEE [Abstract] [PDF Full-Text (100 KB)] IEEE CNF

Web Account

O Access the 2 A product retrieval system for electronic commerce based on KQML
IEEE Member Jeong-Il Song; Han-Hyuk Chung; Eun-Seok Lee;
Digital Library Parallel Processing, 1999. Proceedings. 1999 International Workshops on , 21

Sept. 1999
Pages:387 - 391

[Abstract] [PDF Full-Text (124 KB)] IEEE CNF

3 Coordinating multiple agents in the supply chain

Barbuceanu, M.; Fox, M.S.;

Enabling Technologies: Infrastructure for Collaborative Enterprises, 1996,
Proceedings of the 5th Workshop on , 19-21 June 1996

Pages:134 - 141

[Abstract] [PDF Full-Text (1164 KB)] IEEE CNF

4 Collaborative prototyping in distributed virtual reality using an agei
communication language

Nedelec, A.; Reignier, P.; Rodin, V.;

Systems, Man, and Cybernetics, 2000 IEEE International Conference on , Voli
2, 8-11 Oct. 2000

Pages:1007 - 1012 vol.2

http://ieeexplore.ieee.org/search/searchresult.jsp?query Text=multiagent+%3Cand%3E+kqml... 4/14/04

Search Results

Page 2 of 2

[Abstract] [PDF Full-Text (508 KB)] IEEE CNF

5 Developing coherent multiagent systems using JAFMAS

Chauhan, D.; Baker, A.D.;

Multi Agent Systems, 1998. Proceedings. International Conference on, 3-7)\
1998

Pages:407 - 408

[Abstract] [PDF Full-Text (16 KB)] IEEE CNF

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account |

Publications | Help | FAQ| Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

http://ieeexplore.ieee.org/search/searchresult.jsp?query Text=multiagent+%3Cand%3E+kqml... 4/14/04

Agent Communication Language Page 1 of 4

This is G 0 o g | e's cache of http://infoeng.ee.ic.ac.uk/~malikz/surprise2001/hsh99e/article1/.
G o o g | e's cache is the snapshot that we took of the page as we crawled the web.
The page may have changed since that time. Click here for the current page without highlighting.

To link to or bookmark this page, use the following url: http://www.google.com/search?
g=cache: PORWDXgpAJAJ:infoeng.ee.ic.ac.uk/~malikz/surprise2001l/hsh99e/articlel/+%2B%
22Agent+Communication+language$22&hl=en&ie=UTF-8§

Google is not affiliated with the authors of this page nor responsible for its c

These search terms have been highlighted: agent communication language

By Haw Siang HON

ISE

SR
A “i‘ 3 \1
AN s ¢

i 1% \t the wake of the Internet boom witnessed in the nineties, we are now witnessing
the birth of a new branch of software phenomenon, that of agent-based systems.

The argument over the exact definition of an agent still rages on among the theorists. For the purpose of
this article we simplify an agent by considering it as an entity that can decide for itself, and is
autonomous in that it is a software program that does not require constant human control or supervision
to carry out its set task. This, an autonomous agent, is what we will be referring to when we use the
term, agent.

http://216.239.57.104/search?q=cache:PORWDXgpAJAlJ:infoeng.ee.ic.ac.uk/~malikz/surpris... 4/14/04

Agent Communication Language Page 2 of 4

Agents are designed such that it executes its given task and fulfils its individual goal. However, as time
passed, more complex tasks and problem evolved for agents-based system to solve. This led to the need
for many agents to group together into a community of agents, or society, where they help each other by
carrying out tasks for each other. As well as this, agents have also been used in intelligent systems that
can negotiate and reason with fellow autonomous agent to reach agreements or to persuade one another
to pursue a course of action, usually through a process of negotiation.

Either way, this has brought about the need of agent interactions and the issue of interoperability has
become one of great significance. That is to allow for a community of agents to develop, reason and/or
co-operate - to allow agents to exchange information and services with one another, as well as
negotiating and reasoning against one another.

Many agents together in a community will form a society. Just like a real life society with humans, the
need for a common medium for communication is essential for the agents to reason or co-operate with
each other. The rise in popularity of agent based systems and greater demand for interoperability of
agents have led to the need for a language that can be used not just in a proprietary domain, but inter
domain, i.e., between different vendors over an network or internet. This will be the focus of this article,
the wonderful world of Agent Communication Language or ACLs.

Communication techniques and protocol

Agent communication protocols or languages provides agents with a means of exchanging information
and knowledge, which is really the essence of all forms of interaction in multi-agent systems. Such a
protocol or language can be divided into three major components or layers, an "inner" and an "outer"
language and its vocabulary.

The inner level entails the information content level, that is a logical language used to describe attitudes
about their information or knowledge. This layer allows for knowledge sharing and it is the syntactic
layer of knowledge representation. One of the main aims of such a language is to provide a common
interchange format so that agent-dependent languages can easily be translated to and from this logical
language. Using this language, an agent specifies its content.

The "vocabulary" or terminology is known as the ontology. This layer ensures that a term and indeed,
even an object or entity, will have a uniform meaning amongst all agents involved in interaction even if
different names are used for them. In short, ontology semantically unifies agent communication.

An agent uses the inner language to advertise its capability or its need in a co-operating scenario within
a multi-agent system. At this state, we say that it has put forward its propositional attitude. It is still to
state its intention. This is where ACL comes into play. An ACL is a set of primitives that allow an agent
to state its intention. The primitives are the performatives that agent are permitted to use in an attempt to
communicate with other agents.

In short, we can say that the ACL is the medium through which the intention regarding the content of

the exchange between agents are communicated. Using such performatives as assert, request or query,
with regards to content specified with the inner language.

Agent Communication Language

The increasing popularity of multi-agent based systems that required such complex interactions
persuaded numerous efforts by various consortium to research into ACLs. Some better known examples

http://216.239.57.104/search?q=cache:PORWDXgpAJAJ:infoeng.ee.ic.ac.uk/~malikz/surpris... 4/14/04

Agent Communication Language Page 3 of 4

are the DARPA initiated KSE and FIPA's effort.

The KSE was set up with the aim of developing techniques and software tools to allow for efficient
communication and co-ordination between agents that can be re-used and eventually become the
common tool for all agents based systems.

The KSE concerned itself with the development of each of the three layers mentioned. The Interlingua
group developed an inner language, that of Knowledge Interchange Format (KIF). This serves as a
common language for expressing the content of a knowledge base.

The Shared, Reusable Knowledge Bases (SRKB) group simply provides a plethora of sharable
ontologies and tools.

Acronym Full Form
ACL Agent Communication Language
DARPA Defense Advanlzzcgnlzssearch Projects
KSE Knowledge Sharing Effort
FIPA Foundation for Intelligent Physical Agent

KQML Knowledge Query Manipulation Language

Table of acronyms

Finally and most importantly, the External Interface Group is the group responsible for churning out an
ACL. The result of which was the emergence of Knowledge Query Manipulation Language (KQML).
KQML is a message format that describes the structure of a message that is passed between agents in a
run-time knowledge sharing system. It also provides a library of open-ended primitives or performatives
that describe loosely the permissible actions/operations that agents may attempt in communicating with
one another.

The FIPA is a non-profit organisation that was started to encourage and promote agent-based
applications, services and equipment. FIPA is supported by a huge list of major industrial giants, such as
NEC, Alcatel, NHK and Siemens. It consists of technical committees assigned to topical as well as long
standing issues regarding agent-based systems. One of which is charged with the responsibility with
developing an ACL.

The result of which, was the FIPA ACL. Which is an outer language that specifies message format and
include descriptions of their pragmatics, that is the communicative acts or intentions of the agents.

Note that these ACLs are merely message formats as well as providing library after library
performatives or "instructions" to describe an agent's intention. Multi-agent based systems often impl

ement subsets of the performatives and more often than not, dialects of the ACLs are developed. This is

caused by the fact that the ACL does not have a fixed semantics. Setting fixed semantics would mean
that programmer loses flexibility on designing autonomous and heterogeneous agents.

http://216.239.57.104/search?q=cache:PORWDXgpAJAJ:infoeng.ee.ic.ac.uk/~malikz/surpris... 4/14/04

Agent Communication Language Page 4 of 4

Conclusion

Despite many industry and non-developers adopting some variant of KQML, systems using different
dialect of KQML still cannot inter-operate. There still lacks a universally agreed upon semantics
foundation.

However, multi-agent based systems research is still immature, and further efforts by both FIPA and
KSE are hoped to solve the impending issues. Furthermore, the development of KQML have played an
important role in describing what an ACL is and what it should entail.

Article 2 would look into the details of the two ACLs, and a comparison would be made between the
two along with examples of implementations of them.

References

Co-ordinating PLans of Autonomous Agents, F.Von Martial, In Lecture Notes in Al, Springer-Verlag,
ISBN 3-540-55615-x

Introduction to Software Agents, Chpt. 1, In Software Agents, J. Bradshaw, MIT Press, ISBN 0-262-
522349

KQML as ACL, T. Finin, Y. Labrou and Mayfield, Paper in Software Agents, J. Bradshaw, MIT Press,
ISBN 0-262-522349

Communicative actions for artificial agents, P.Cohen, H. Levesque, In proceedings of 1st
International Conference on multi-agent systems

Semantics and conversations for an ACL, Y Labrou, T. Finin, Paper in Readins in Agents, Morgan-
Kaufmann Publishers, ISBN 1-55860-495-2, M. Huhns, M. Singh

Agent Communication Language: Rethinking the Principle, In /[EEE Computer, December 1998,
pg.40-47, M.Singh

Agent Communication Language: The Current Landscape, In IEEE Intelligent Systems,
March/April 1999, pg.45-52, Y.Labrou, T.Finin, Y.Peng

Webpage: Agent Communication Language and Protocol
(http://agents.umbc.edu/technology/acl.shtml)

Webpage: European Agent Link Homepage (http://www.agentlink.org)

Webpage: IC Online ACL-based Agent Systems (http://www.computer.org/internet/v4n2/w2agents.htm)

http://216.239.57.104/search?q=cache:PORWDXgpAJAJ:infoeng.ee.ic.ac.uk/~malikz/surpris... 4/14/04

KQML as an Agent Communication Language - Finin (ResearchIndex) Page 1 of 3

KQML as an Agent Communication Language View or download:
(1994) (Make Corrections) (382 citations) umbc.edu/agents/kqml/pape...kgmlacl.ps
Tim Finin, Richard Fritzson, Don McKay, Robin McEntire _ umbc.edu/kqml/papers/kgmiacl.ps
Proceedings of the 3rd International Conference on cuiwww.unige.ch/OSG/pe...kamlacl.ps.gz
Information and Knowledge Management (CIKM'94) ~ Cached: PS.gz PS PDF DVu Image Update Help
= Home/Search Bookmark Context From: inf.ufsc.br/iad/users/c...eastman (more)
s,,!.t“,e.,ssﬁ! From: cuisg11.unige.ch/OSG/peopleljv...
Related (Enter author homepages)
(Enter summary) Rate this article: 1 2 3 4 5 (best)

View Comments (0)

Abstract: This paper describes the design of and experimentation with the
Knowledge Query and Manipulation Language (KQML), a new language and protocol for exchanging information
and knowledge. This work is part of a larger effort, the ARPA Knowledge Sharing Effort which is aimed at
developing techniques and methodology for building large-scale knowledge bases which are sharable and
reusable. KQML is both a message format and a message-handling protocol to support run-time knowledge
sharing among agents. ... (Update) '

Context of citations to this paper: More

...ndcessaires h la communication entre les agents en plus de fournir un vdrificateur de la syntaxe de KQML.
Rappelons que KQML [14] est un langage d interrogation et de manipulation des connaissances. C est un
langage basd sur les acres du langage naturel [8] I1...

...and it s modification in an explicit way. All the agents use Knowledge Query and Manipulation Language
(KQML) for communication [8]. AP and PA multiagent system play a key role in enabling INTERLABS
distributed virtual campus Each INTERLABS client uses a Web navigator...

Cited by: More
Interaction Modal Logic for multiagent systems based - On Bdi Architecture (Correct)
Stream Oriented Interactions for Highly - Distributed And Disconnected (Correct)

Similar documents (at the sentence level): More
31.0%: KQML as an Agent Communication Language - Finin, Labrou, Mayfield (1994) (Correct)

0.2: A Security Architecture for Agent Communication Languages - Mayfield, Finin (Correct)

Similar documents based on text: More All

0.7: A Security Architecture Based on Trust Management for.. - Systems Lalana Kagal (2002) (Correct)
0.7: A Reactive Service Composition Architecture for.. - Chakraborty.. (2002) (Correct)

Related documents from co-citation: More All

17:. Software Agents - Genesereth, Ketchpel - 1994

14. Enabling technology for knowledge sharing (context) - Neches, Fikes et al. - 1991

10: A Translation Approach to Portable Ontology Specifications (context) - Gruber - 1993

BibTeX entry: (Update)
T. Finin et.al.: "KQML as an Agent Communication Language ", 3rd International Conference on Information and

Knowledge Management (CIKM94), ACM Press, December 1994
http://citeseer.ist.psu.edu/article/finin94kgml.html More

http://citeseer.ist.psu.edw/20174.html 4/14/04

KQML as an Agent Communication Language - Finin (ResearchIndex) Page 2 of 3

@inproceedings{ finin94kqml,

author = "T. Finin and R. Fritzson and D. McKay and R. McEntire",
title = "{KQML as an Agent Communication Language)",
booktitle = "Proceedings of the 3rd International Conference on Information and

publisher = "ACM Press",

address = "Gaithersburg, MD, USA",

editor = "N. Adam and B. Bhargava and Y. Yesha",

pages = "456~--463", :

year = "1994",

url = "citeseer.ist.psu.edu/article/finin9%4kgml.html" }

Citations (may not include all citations):

187 Enabling technology for knowledge sharing (context) - Neches, Fikes et al. - 1991

179 Practical Planning: Extending the Classical Al Planning Para.. (context) - Wilkins - 1988

174 Knowledge interchange format (context) - Genesereth, Fikes - 1992

104 PACT: An experiment in integrating concurrent engineering sy.. - Cutkosky, Engelmore et al. - 1993
82 The DARPA knowledge sharing effort: Progress report - Patil, Fikes et al. - 1992

82 The DARPA knowledge sharing effort: Progress report - Patil, Fikes et al. - 1992

73 A semantics approach for KQML -- a general purpose communica.. - Labrou, Finin - 1994

66 The LOOM knowledge representation language (context) - MacGregor, Bates - 1987

50 Shade: Technology for knowledgebased collaborative - Kuokka - 1993

50 Shade: Technology for knowledgebased collaborative engineeri.. - McGuire - 1993

41 Planning and reformulating queries for semantically-modeled .. - Arens - 1992

38 Genesereth and Steven P (context) - Michael - 1994

33 An intelligent agent framework for enterprise integration (context) - Pan, Tenenbaum - 1991

22 Viewconcepts: Knowledge-based access to databases - Pastor, McKay et al. - 1992

21 Enterprise integration: Lessons from shade and pact (context) - Tenenbaum, Weber et al. - 1993
16 Knowledge interchange format: The KIF of death - Ginsberg - 1991

14 An agent-based approach to software interoperability (context) - Genesereth - 1993

11 and Stefano Ceri (context) - Wiederhold, Wegner - 1992

10 Query processing in an information mediator - Arens, Chee et al. - 1994

7 SOCAP: system for operations crisis action planning - Bienkowski, desJardins et al. - 1994

6 Specification of the KQML agentcommunication language (context) - Working, Knowledge et al. - 1992
5 The knowledge representation specification language manual (context) - Lehrer - 1994

3 A knowledge query and manipulation language for intelligent .. (context) - Finin, Fritzson et al. - 1992
3 Cosmos: A system for supporting design negotiation (context) - Mark - 1994

1 A highlevel language and protocol to support intelligent age.. (context) - Finin, Fritzson et al. - 1992

1 Expanding the Definition of Database (context) - Finin, Nicholas et al. - 1993

Year of Publication of Citing Articles

0

£

S se _______L______

+

S 48 |

oy

0 .

o 30 |

° 20|

5

g 19

2 2 1] 1 1 1] L 1 1]
1994 1995 1996 1997 1998 1999 2000 2ea1 2082 2083

Year

The graph only includes citing articles where the year of publication is known.

Documents on the same site (http://www.inf.ufsc.br/iad/users/c/carlos/eastman.htm):
Modelling Interaction in Agent Systems - Dalmonte, Gaspari (1995) (Correct)

Online articles have much greater impact More about CiteSeer.IST Add search form to your site Submit
documents Feedback

http://citeseer.ist.psu.edu/20174.htmi 4/14/04

KQML as an Agent Communication Language - Finin (ResearchIndex) Page 3 of 3

CiteSeer.IST - Copyright NEC and IST

http://citeseer.ist.psu.edu/20174.html 4/14/04

Google Search: +"Agent Communication language” . Page 1 of 2

Web Images Groups News FroogleN®"!' more »

GO gl@ [+"Agent Communication language" | - T

.Web Results 1 - 10 of about 10,400 for +"Agent Communication language”. (0.38 seconds)

UMBC KQML Web
A page from the UMBC KQML Web -- a collection of web pages on the KQML
Agent Communication Language. UMBC KQML Web UMBC LAIT | AgentWeb ...

www.cs.umbc.edu/kgml/ - 5k - Cached - Similar pages

rs) KQML as an Agent Communication Language

File Format: Adobe PostScript - View as Text

KQML as an Agent Communication Language. \Lambda. Tim Finin and Richard Fritzson.
Computer Science Department University of Maryland Baltimore County. ...

[More results from www.cs.umbc.edu]

FIPA Agent Communication Language Specifications
.. FIPA Agent Communication specifications deal with Agent Communication Language (ACL)
messages, message exchange interaction protocols, speech act theory-based ...

www.fipa.org/repository/aclspecs.htmi - 31k - Cached - Similar pages

Agent Communication Language

... This will be the focus of this article, the wonderful world of Agent

Communication Language or ACLs. ... Agent Communication Language. ...
infoeng.ee.ic.ac.uk/~malikz/surprise2001/ hsh99e/article1/ - 12k - Cached - Similar pages

Agent Communication language
Agent Communication language (ACL). ... Form: A good agent communication language
should be declarative, syntactically simple and readable by people. ...

infoeng.ee.ic.ac.uk/~malikz/surprise2001/ kt197/article2/main.htmil - 46k - Cached - Similar pages

KQML as an Agent Communication Language - Finin (Researchindex)
KQML as an Agent Communication Language (1994) (Make Correctlons) (382
citations) Tim Finin, Richard Fritzson, Don McKay, Robin McEntire. .

citeseer.ist.psu.edu/20174.html - 15k - Cached - Similar pages

KQML as an agent communication language - Finin (Researchindex)
KQML as an agent communication language (1995) (Make Corrections) (382
citations) Tim Finin, Yannis Labrou, James Mayfield. Proceedings ...
citeseer.ist.psu.edu/26577.html - 25k - Cached - Similar pages

[More results from citeseer.ist.psu.edu]

Autonomous agent 2000 Workshop on Agent Communication
... A first attempt to come to a standardised agent communication language (ACL)
came forth from the DARPA knowledge sharing project and produced KQML. ...

wwwis.win.tue.nl/ac2000/ - 35k - Cached - Similar pages

RoboCup-Rescue Simulation Agent Communication Language
Agent Communication Language for RoboCup-Rescue Simulation Prototype.
Morita's Message. hi This is the design plan of the communication ...

www.rescuesystem.org/robocuprescue/acl.html - 26k - Cached - Similar pages

http://www.google.com/search?hl=en&ie=UTF-8&0e=UTF-8&q=%2B%22Agent+Communi... 4/14/04

Google Search: +"Agent Communication language" Page 2 of 2

ACL, Agent Communication Language
Term. ACL, Agent Communication Language. Mentioned, ... Now with TMs. ACL KQML Agent
Communication Languages. FIPA's Agent Communication Language (ACL) FIPA ACL. ...

www.infoloom.com/gcaconfs/WEB/ts1273/tp1273.HTM - 3k - Cached - Similar pages

Goooooooooogle b
ResultPage: 12345678 910 Next

|+"Agent Communication Ianguag] :

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Solutions - Business Solutions - About Google

©2004 Google

http://www.google.com/search?hl=en&ie=UTF-8&0e=UTF-8&q=%2B%22Agent+Communi... 4/14/04

N

10
11
12
13
14
15
16
17
18

19
20

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA ACL Message Structure Specification

Document title FIPA ACL Message Structure Specification

Document number [SC00061G Document source FIPA TC Communication
Document status [Standard , Date of this status 2002/12/03

Supersedes None

Contact fab@fipa.org

Change history See Informative Annex A — Changel.og

© 1996-2002 Foundation for Intelligent Physical Agents
http://www fipa.org/
Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual propenrty of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

21

22
23
24
25
26

27
28
29
30
31

32
33
34
35

36
37
38

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies where appropriate.

The members of FIPA are individually and collectively committed to open competition in the development of agent-
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm,
partnership, governmental body or international organization without restriction. In particular, members are not bound to
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their
participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process
of specification may be found in the FIPA Document Policy [f-out-00000] and the FIPA Specifications Policy [f-out-
00003]. A complete overview of the FIPA specifications and their current status may be found on the FIPA Web site.

FIPA is a non-profit association registered in Geneva, Switzerland. As of June 2002, the 56 members of FIPA
represented many countries worldwide. Further information about FIPA as an organization, membership information,
FIPA specifications and upcoming meetings may be found on the FIPA Web site at http://www.fipa.org/.

39

40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Contents

1
2

3
4

FIPA ACL MESSAJE SHTUCIUIEorueiiiiriiiieiiriirieircitree e st sreet e et eennerte st e sts st e sassa s e st aeeer e e st st esseteensessassassesnsosnonnens
2.1 Type of COMMUNICANIVE ACt ..o ettt st s ettt ene e st e enreanaa on
2.11 P OrMALIVEottt e e ettt st e et e et e et e et e ne st e banans
2.2 Participants in COMMUNICATIONcccvveerreiiieciriniee i recrsssraissats e bt e s s seeese s sses s e neessesesnsnsensessssnsessnasssressanens
2241 L= 1o LT U O PO ST SU OO
P 1= To T = U TP OOUPPPRROTUPRRRPRON
2.2.3 REDIY T 0 i e e e bRt be s s b e e et b bra s b et bas s
2.3 CONENT OFf IMESSAGER ...eevvieeieerriereerereirereoeecrreereeeessanosseessseesosesssesostssssnmeesasssesssnseessranenssreosssresessnsssssersassessnsenssnns
2.3.1 CONEENT. ...ttt te s sttt essteae e sesr e e e e s e s bt ra e s esssasaaae e aes s st s aoesssrbesssnsnstsasssssarerssarsneassasnas
2.4 DesCription Of CONMENL.......ccoooieir ettt teesrterreesee s s e e s st e csaecreees srssessesssaesssnnesnseressnnresssnesssnsessseesaseesasees
2.4.1 LANGQUAGE ..ceeiiiuiriereerieiiitieetitaiateesainteesssresssontessanssniesasssatessaesesneraessssasnssnensossnnsessssssssersssssenesassrensassnsnnees
2.4.2 ENCOGING ..oeiiiiiiiiiiiii ittt e e e bR E s R S s e b s br e bbb saer e cree e e neneneene
P20 3 B © 31 (o oo 1Y OO OO PP SO TR OURPPO
2.5 CONtrol Of CONVEISAtON.oiiiiciiiireiiciirrirrees st steererre st see s e este s s s resra e snestessesastssssasesosasnesensesasessersensensn
2.5.1 PrOTOCOL ...ttt et e e seen e sn e s st se s en et r e ees e e e ne s ket e e s n e et e e s snte e reesareeeeteesrananean
2.5.2 Conversation IdNHHIENccooii ittt e ettt st st et s e ne s ean e e eee st e s nns
283 REPIY WIth ..o e e s s et er s sent st saan s
254 INREPIY TO o e e s e saa e s
255 REPIY BY e e s

informative ANNEX A — ChangeLog ..ot e e e s r e
4.1 2002/10/071 - version F Dy TC X2 ... ettt ettt e s s s met et e s srae s e ne s mene s s rnsennaeeansnennne
42 2002/12/03 - version G by FIPA Architecture Boardccccoovviiiiiiniiiiiiin e e

© 1996-2002 Foundation for Intelligent Physical Agents FIPA ACL Message Structure

64 1 Scope

65 This document contains specifications for the FIPA ACL message parameters. The objectives of standardizing the form
66 of a FIPA-compliant ACL message are:

67

68 ¢ To help ensure interoperability by providing a standard set of ACL message structure, and,

69

70 e« To provide a well-defined process for maintaining this set.

71

72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97

98

99
100
101
102
103
104
105
106

© 1996-2002 Foundation for Intelligent Physical Agents FIPA ACL Message Structure

2 FIPA ACL Message Structure

A FIPA ACL message contains a set of one or more message parameters. Precisely which parameters are needed for
effective agent communication will vary according to the situation; the only parameter that is mandatory in all ACL
messages is the performative, although it is expected that most ACL messages will also contain sender,
receiver and content parameters.

If an agent does not recognize or is unable to process one or more of the parameters or parameter values, it can reply
with the appropriate not-understood message.

Specific implementations are free to include user-defined message parameters other than the FIPA ACL message
parameters specified in Table 1. The semantics of these user-defined parameters is not defined by FIPA, and FIPA
compliance does not require any particular interpretation of these parameters. The prefatory string “X-" must be used
for the names of these non-FIPA standard additional parameters.

Some parameters of the message might be omitted when their value can be deduced by the context of the
conversation. However, FIPA does not specify any mechanism to handle such conditions, therefore those
implementations that omit some message parameters are not guaranteed to interoperate with each other.

The full set of FIPA ACL message parameters is shown in Table 1 without regard to their specific encodings in an
implementation. FIPA-approved encodings and parameter orderings for ACL messages are given in other
specifications. Each ACL message representation specification contains precise syntax descriptions for ACL message
encodings based on XML, text strings and several other schemes.

A FIPA ACL message corresponds to the abstract parameter message payload identified in the [FIPAQ0001].

Parameter Category of Parameters
performative Type of communicative acts
sender Participant in communication
receiver Participant in communication
reply-to Participant in communication
content Content of message
language Description of Content
encoding Description of Content
ontology Description of Content
protocol Control of conversation
conversation-id Control of conversation
reply-with Control of conversation
in-reply-to Control of conversation
reply-by Control of conversation

Table 1: FIPA ACL Message Parameters
The tollowing terms are used to define the ontology and the abstract syntax of the FIPA ACL message structure:
o Frame. This is the mandatory name of this entity that must be used to represent each instance of this class.

e Ontology. This is the name of the ontology, whose domain of discourse includes their parameters described in the
table.

107
108
109
110
111
112
113
114
115
116
117

118
119
120

121

122

123
124
125
126

127

128

129
130
131
132
133

134

135
136
137
138
139
140
141
142
143
144
145

© 1996-2002 Foundation for Intelligent Physical Agents FIPA ACL Message Structure

o Parameter. This identifies each component within the frame. The type of the parameter is defined relative to a
particular encoding. Encoding specifications for ACL messages are given in their respective specifications.

e Description. This is a natural language description of the semantics of each parameter. Notes are included to
clarify typical usage.

* Reserved Values. This is a list of FIPA-defined constants associated with each parameter. This list is typically
defined in the specification referenced.

All of the FIPA message parameters share the frame and ontology shown in Table 2.

Frame fipa-acl-message
Ontology fipa-acl

Table 2: FIPA ACL Message Frame and Ontology

2.1 Type of Communicative Act

2.1.1 Performative

Parameter Description Reserved Values
performative | Denotes the type of the communicative act of the ACL message See [FIPAQ0037]

Notes: The performative parameter is a required parameter of all ACL messages. Developers are encouraged to
use the FIPA standard performatives (see [FIPA00037]) whenever possible.

2.2 Participants in Communication

221 Sender
Parameter Description Reserved Values
sender Denotes the identity of the sender of the message, that is, the
name of the agent of the communicative act.

Notes: The sender parameter will be a parameter of most ACL messages. It is possible to omit the sender parameter
if, for example, the agent sending the ACL message wishes to remain anonymous. The sender parameter refers to the
agent which performs the communicative act giving rise to this ACL message.

2.2.2 Receiver

Parameter Description Reserved Values
receiver Denotes the identity of the intended recipients of the message.

Notes: Ordinarily, the receiver parameter will be a part of every ACL message. It is only permissible to omit the
receiver parameter if the message recipient can be reliably inferred from context, or in special cases such as the
embedded ACL message in proxy and propagate.

The receiver parameter may be a single agent name or a non-empty set of agent names. The latter corresponds to
the situation where the message is multicast. Pragmatically, the semantics of this multicast is that the sender intends
the message for each recipient of the CA encoded in the message. For example, if an agent performs an inform act
with a set of three agents as receiver, it denotes that the sender intends each of these agents to come to believe the
content of the message.

146

147

148

149

150
151
152
153

154

155

156
157
158
159

160

161
162
163
164
165

166

167
168
169
170
171

© 1996-2002 Foundation for Intelligent Physical Agents FIPA ACL Message Structure

2.2.3 Reply To

Parameter Description Reserved Values
reply-to This parameter indicates that subsequent messages in this
conversation thread are to be directed to the agent named in the
reply-to parameter, instead of to the agent named in the
sender parameter.

2.3 Content of Message

2.3.1 Content

Parameter Description Reserved Values
content Denotes the content of the message; equivalently denotes the
object of the action. The meaning of the content of any ACL
message is intended to be interpreted by the receiver of the
message. This is particularly relevant for instance when referring
to referential expressions, whose interpretation might be different
for the sender and the receiver.

Notes: Most ACL messages require a content expression. Certain ACL message types, such as cancel, have an
implicit content, especially in cases of using the conversation-id or in-reply-to parameters.

2.4 Description of Content

2.4.1 Language

Parameter Description Reserved Values
language Denotes the language in which the content parameter is See [FIPAGO007]
expressed.

Notes: The ACL content parameter is expressed in a formal language. This field may be omitted if the agent
receiving the message can be assumed to know the language of the content expression.

2.4.2 Encoding

Parameter Description Reserved Values
encoding Denotes the specific encoding of the content language See [FIPA00007]
expression.

Notes: The content expression might be encoded in several ways. The encoding parameter is optionally used to
specify this encoding to the recipient agent. If the encoding parameter is not present, the encoding will be specified in
the message envelope that encloses the ACL message.

2.4.3 Ontology

Parameter Description Reserved Values
ontology Denotes the ontology(s) used to give a meaning to the symbols in
the content expression.

Notes: The ontology parameter is used in conjunction with the language parameter to support the interpretation of
the content expression by the receiving agent. In many situations, the ontology parameter will be commonly
understood by the agent community and so this message parameter may be omitted.

172

173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192

193
194
195
196
197
198
199
200
201
202

203

204
205
206

207
208

209
210

211
212

© 1996-2002 Foundation for Intelligent Physical Agents FIPA ACL Message Structure

2.5 Control of Conversation

2.5.1 Protocol

Parameter Description Reserved Values
protocol Denotes the interaction protocol that the sending agent is See [FIPA00025]
employing with this ACL message.

Notes: The protocol parameter defines the interaction protocol in which the ACL message is generated. This
parameter is optional; however, developers are advised that employing ACL without the framework of an interaction
protocol (and thus directly using the ACL semantics to control the agent's generation and interpretation of ACL
messages) is an extremely ambitious undertaking.

Any ACL message that contains a non-null value for the protocol parameter is considered to belong to a
conversation and it is required to respect the following rules:

» the initiator of the protocol must assign a non-null value to the conversation-id parameter,

o all responses to the message, within the scope of the same interaction protocol, should contain the same value for
the conversation-id parameter, and,

¢ the timeout value in the reply-by parameter must denote the latest time by which the sending agent would like to

have received the next message in the protocol flow (not be confused with the latest time by which the interaction
protocol should terminate). :

2.5.2 Conversation Identifier

Parameter Description Reserved Values
conversation | Introduces an expression (a conversation identifier) which is used
-id to identify the ongoing sequence of communicative acts that

together form a conversation. '

Notes: An agent may tag ACL messages with a conversation identifier to manage its communication strategies and
activities. Typically this will allow an agent to identify individual conversations with multiple agents. It will also allow
agents to reason across historical records of conversations.

It is required the usage of globally unique values for the conversation-id parameter in order to allow the
participants to distinguish between several concurrent conversations. A simple mechanism to ensure uniqueness is the
concatenation of the globally unique identifier of the sender agent to an identifier (for example, a progressive number)
that is unique within the scope of the sender agent itself

2.5.3 Reply With

Parameter Description Reserved Values
reply-with Introduces an expression that will be used by the responding
agent to identify this message.

Notes: The reply-with parameter is designed to be used to follow a conversation thread in a situation where multiple
dialogues occur simultaneously. For example, if agent i sends to agent ja message which contains:

reply-with <expr>
Agent j will respond with a message containing:

in-reply-to <expr>

© 1996-2002 Foundation for Intelligent Physical Agents FIPA ACL Message Structure
213

214 25.4 InReplyTo

Parameter Description Reserved Values
in-reply-to Denotes an expression that references an earlier action to which
this message is a reply.

215
216 Notes: See notes for Section 2.5.3.
217

218 2.5.5 Reply By

Parameter Description Reserved Values
reply-by Denotes a time and/or date expression which indicates the latest
time by which the sending agent would like to receive a reply.

219

220 Notes: The time will be expressed according to the sender's view of the time on the sender’s platform. The reply
221 message can be identified in several ways: as the next sequential message in an interaction protocol, through the use
222 of the reply-with parameter, through the use of a conversation-id and so forth. The way that the reply message
223 s identified is determined by the agent implementer.

224

225

226
227
228
229
230
231
232
233
234

© 1996-2002 Foundation for Intelligent Physical Agents FIPA ACL Message Structure

3 References

[FIPA00001]
[FIPA00007)
[FIPA00025]
[FIPA00037]

FIPA Abstract Architecture Specification. Foundation for Intelligent Physical Agents, 2000.
http://www. fipa.org/specs/£fipa00001/

FIPA Content Languages Library Specification. Foundation for Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/fipa00007/

FIPA Interaction Protocol Library Specification. Foundation for Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/£fipa00025/

FIPA Communicative Act Library Specification. Foundation for Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/fipa00037/

235

236

237
238
239
240
241
242
243

244

245
246

© 1996-2002 Foundation for Intelligent Physical Agents FIPA ACL Message Structure

4 Informative Annex A — ChangelL.og

4.1 2002/10/01 - version F by TC X2S

Page 1, line 64: Removed references to maintenance procedures and inclusion criteria

Page 2, line 83: Added requirement that additional parameters have the “x-* prefix

Page 4, line 148: Specified that the content is intended to be interpreted by the receiver

Page 5, line 178: Added requirements to control the conversations

Page 5, line 184: Added requirement that conversation-id parameter be a globally unique identifier

Page 7, lines 222-260: Removed section 3 on maintenance of FIPA ACL

4.2 2002/12/03 - version G by FIPA Architecture Board
Entire document: Promoted to Standard status

Google Search: +"Agent Communication language" Page 1 of 2

Web Images Groups News FroogleMe™' more »

C () |+"Agent Communication language” | ST ovanced Search
'Web Results 11 - 20 of about 10,400 for +"Agent Communication language". (0.28 seconds)

ror] TRENDS IN AGENT COMMUNICATION LANGUAGE

File Format: PDF/Adobe Acrobat - View as HTML

Computational Intelligence, Volume 2, Number 5, 2002 TRENDS IN AGENT COMMUNICATION
LANGUAGE B. Chaib-draa* and F. Dignum**) Computer Science Department ...

Operational specification of a commitment-based agent ...

... Operational specification of a commitment-based agent communication

language. Full text, pdf formatPdf (195 KB). Source, International ...

portal.acm.org/ citation.cfm?id=544868&d|I=ACM&coll=portal&CFID=11111111&CFTOKEN=2222222 -

Similar pages

Denotational semantics for agent communication language

... Denotational semantics for agent communication language. Full text, pdf
formatPdf (268 KB). Source, International Conference on Autonomous ...
portal acm. org/ citation. cfm'7

[More results from portal.acm.org]

reor TRENDS IN AGENT COMMUNICATION LANGUAGE

File Format: PDF/Adobe Acrobat

Computational Intelligence, Volume 18, Number 2, 2002 TRENDS IN AGENT COMMUNICATION
LANGUAGE B. C HAIB DRAA Laval University Canada F. D IGNUM Utrecht ...

KQML as an agent communication language
KQML as an agent communication language. Fachgebiet: Informationssysteme, ...

www.is.infarmatik.uni-duisburg.de/ bib/xmi/Finin_etal_94.html - 6k - Cached - Similar pages

KQML as an agent communication language
KQML as an agent communication language. Working group: Information Systems, ...
www.is.informatik.uni-duisburg.de/ bib/xml/Finin_etal_94.html.en - 6k - Cached - Similar pages

[More results from www.is.informatik.uni-duisburg.de]

FACL: A Form-Based Agent Communication Language for Enduser ...
October 25 - 28, 2000 Taipei, Taiwan. p. 139 FACL: A Form-Based Agent Communication
Language for Enduser-Initiative Agent-Based Application Development. PDF. ...

csdl.computer.org/comp/proceedings/compsac/ 2000/0792/00/07920139abs.htm - 12k - Cached - Similar pages

RoboCup-Rescue Simulation Agent Communication Language Version 0
Agent Communication Language for RoboCup-Rescue Simulation Prototype. Morita's
Message. This is revised version of civilian language specification ver. ...

sakura.meijo-u.ac.jp/ttakaHP/kiyosu/ robocup/Rescue/acl0.html - 10k - Cached - Similar pages

FIPA 1997 part 2: Agent Communication Language

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS. FIPA 97 Specification. Part 2.
Agent Communication Language. Obsolete. Publication date: 10 th October, 1997. ...
www.fipa.org/specs/fipa00018/OC00018A.htm! - 101k - Cached - Similar pages

[More results from www.fipa.org]

http://www.google.com/search?q=%2B%22 Agent+Communication+language%?22&hl=en&l...

4/14/04

Google Search: +"Agent Communication language" Page 2 of 2

May 1999 : XML-based Agent Communication: VPN Provisioning as a ...
... example). For example, 'an agent should speak an agent communication
language', or 'an agent has beliefs, desires and intentions'. ...
www.infoloom.com/gcaconfs/WEB/granada99/bau.HTM - 38k - Cached - Similar pages

[More results from www.infoloom.com]

4 Gooooooooooogle b
Result Page: Previous 1 2 34 56 7 8 91011 Next

|+"Agent Communication languag]]

Search within results | Language Tools | Search Tips

Google Home - Advertising Solutions - Business Solutions - About Google

©2004 Google

http://www.google.com/search?q=%2B%22Agent+Communication+language%22&hl=en&l... 4/14/04

4
This is G 0 o g | e's cache of hitp://www.fipa.org/specs/fipa00018/0C00018A.htmi.
G o 0 g | e's cache is the snapshot that we took of the page as we crawled the web.
The page may have changed since that time. Click here for the current page without highlighting.

To link to or bookmark this page, use the following url: http://www.google.com/search?
g=cache :Ep8p2hg0IKOJ: www.fipa.org/specs/fipa00018/0C00018A.html+$2B%22Agent +Communication+language$
22&hl=en&ie=UTF-8

Google is not affiliated with the authors of this page nor responsible for its content.

These search terms have been highlighted: agent communication language

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA 97 Specification
Part 2

Agent Communication Language
| Obsolete

Publication date: 10" October, 1997
© 1997 FIPA - Foundation for Intelligent Physical Agents

Geneva, Switzerland

http://216.239.57.104/search?q=cache:Ep8p2hg0IKO0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

Contents

Obsolete.....

a & W NN =

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.4
6.4.1
6.4.2
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10

... 1
L g PP 1
Normative references.....ccuuiiimmiiicaieiinmcininininenem st s 2
Terms and definitions..... ...t s s s e s e e n s s e s s snsseneenne 3
Symbols (and abbreviated terms).............ccceinririniinncne e e 6
Overview of Inter-Agent CommuURNICAtION.......ccouietirenicrnne ettt eresssssseenanenessseeenssnes 7
INEFOAUCRION....c..ccreeecrrccininisennnisnr s niseeaisnsssssesssane e snaassasanasessonsssas sssasassnt asesnasanssennesaanntsssnnanrenns 7
Message Transport MechanisSms..........cuvirrcceinicsinnnncciinnenieaniescnersssssaissasnissssemsssnsssssansssssssns 8
FIPA ACL MESSAUES....cccuuureessiitiecaninmisssinessssmisisssentssmsssssssasarstesissorssssaserisisissesssssassassasnsssssanansass 11
Preamble........cceiireieciicnsinicciriessi st s ns e e s s ar e st s s as s s s s e aaa e s as e s nn e nnn 1
Requirements on agents............iiiiiiineeeniiensnnsatieenesssssscnentetiecieenase s s nn s e s snasans 11
MeSSAGe SITUCIUNE......cace it sen e caen e s seeres s e e nsessne s e ssanansenmnsnssnns s s snan s annans 12
Overview of ACL MEeSSAQGES.......ccccceueriimmmeresiiinisssearseansasssnenseasnansansenissmssssisersssssissinensnssassenssanes 12
MeSSage PArAMELErsS.......cccviiicessimensicinniiiisnaiicisssnentsesisssssaserenrerississnnnnnssesssasssassasannnmsessaansnssss 13
Message content.... ... ieciciiiienniinniinnicesaienii s sssnsetsr it ns s s s asa s se s smanensns 14
Representing the content of messages...........ceninninnnniciiniir et e sssseniens 15
Use of MIME for additional content expression encoding.......cccccccemiiciinnssmnssescsansnniesessniesssesnns 16
Primitive and composite communicative acts........cccoiiciiinremenriinncncninn s 16
MeESSAGE SYNAX....ccootiiicciriiennieanerisiiisetsatisinn s ssrassesstesssnasesessanaansossantsessnnsesaansessnmnmsssnnnssssnasinsas 17
Grammar rules for ACL message SYNtaX........c.cccuemeisiinsesessossenisissesissssassasanstannieniesssesssossessansanne 18
Notes on grammar FUIES..........o.eviiieieessiitiessemtis s s tnssaesetsesssssesessatnsessasssnsasessnenesssnasssssnasonsas 20
Catalogue of Communicative Acts...........ciicrticnntnccn sttt sen s sass s ssesnnens 20
Preliminary NOtes.......cccccumiiimicnsniceiiinssiiaiscermissssseisisssissnenseriesiessssnnsersssessnssasssssnsseassessansnnsssse 21
ACCEPL-PrOPOSAL.........cciieremmiirireseriineiscnniiieertisesssesr et sssssnsatsnaesossnassassessasnansisasanannasansnasentansnn 23
BUFCE.......cccceeeieienesraessesserestesnannrannntsorssssneansorssrssstars toes 1osesssssassssasessstostassines esssssssteantessinesissssessnne 24
CANCEL. ..o it ciciinremstirseis i iennue st icsressanssstassenaataenesosessssnessssnenssitonsesosassssteassnastsstenesessessnassanannsnsens 25
) { « T PSPPSR 26
CONTIPML ...ttt e srcaa e sas s snsn s ae e sesesasste b esssanevsetsss e sesasns i snssstsensssnnsnnriessornas 27
BISCONTIPM.......ccec et e e e s st e en s aara s s s es s e s b aa s s snanen s ss saanaanassessannessts 28
FAIIUT@.....eeeeeciiiiciniecnininenessenstieene et e st ssas e ssrs s e st o sasanseeassnen s eassanaatsnasnessanns bastasansarensnasaanans 29
VORI . cccrtert s sess s er s s sraa st e s ss s arsaeaseesssoasatossorhansansiserssnessisssannnsessesstsnasensine 30
inform-if (MACro ACE).......rrecccitree et resr st eneesen s s an s erenss ensaes i sansssnnns 31

http://216.239.57.104/search?q=cache:Ep8p2hgO0IK 0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.11
6.5.12
6.5.13
6.5.14
6.5.156
6.5.16
6.5.17
6.5.18
6.5.19
6.5.20
6.5.21

74

7.2

73

7.3.1
7.3.2
73.3
734
7.3.5
7.3.6
73.7
7.3.8

8.1
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.4

inform-ref (macro act)..............ccovmeerceicirmrrrnennne. erereeseseeesss e s essemese e 32
NOL-UNAErstoOd......cccceitrimmmimiisscsiniremsessirisssnsesiisisistiessiosstsirsssssnnanarissssssnsenssssssssnrsassasmannes essniens 34
PrOPOSE..cciiiisneiriisasnniinersmrensterssnssarssssssnsnresronsanasssssssssssssas tssesensnssnassrssssssssastorsssnasasasssssnnnnsssnsassne 35
QUETY=If.crecuiiinserenrenninnsnsentassonnnisansssontesssnnonsensarsnsonmmsassesssnnsssestassensnsas sessstansssessntestsnssnsarnsassassnsne 36
QUETYTCE...... e iieincrniiserisrs s essinas st s ss s s as s sssa e s smn s se s resanr s s mr e an sran res s R s Rn R AR e RS S ansa s £ 0ms 37
FOTUIS . e e ceaeciriecrrntriissssesnisscsts st s se s sasan sr s s s anrarsssssssesasaasesatssastasansssssionanantasssstanserssssvavssonsnsannanane 38
FEJeCt-ProPosSal..........ccieiciiecciiiisiie st sana s essssasenn st e sa st saa s sa s srn e e smnenes sanas s sn e e e Re s iR RS e en 39
= LT R 40
=T LT LT o T o PN 41
=T [T RV 1= T =T g OIS 42
LT 1Yo 1 - TP, 43
Interaction Protocols............iiiccimmiminnicniiennnnsiiiciesssninesiiiisnissenaieinemesneriessssesseisessnssnsessssnanse 44
Specifying when a protocol is in operation............ciierreernieenicnrees e e 44
Protocol Description Notation.................c..... teessensirenssssenssnasessssssarsassaesnunessanenneies B4
DEfiNEU PrOTOCOIS....c.cevueecerrraeenreasassssessnrssssssesessssesssrssesssssstssssssstasssassstensssas s ssss s sess senssssassnses 45
Failure to understand a response during @ pProtocol.......cc.cecvmeeimiiciissneerinnneseeicisnnrrerssaneans 45
FIPA-request Protocol........................_ ... 45
FIPA-QUErY Protocol.........ccccmimemiieicemiiisimininnissnis e sssnnsessnstsessestaesssassessons sessnne e smes nanssssssasse 46
FIPA-request-when Protocol...........cuiiiiiimieeiiieeeainiineecieniieissnmennienisesessssscamenensssssmncocssesenmnnsas 46
FIPA-contract-net ProtoCol........ccccccimececnmiinincniiniieecissinnniieiessssseeniessssssonsescssssssmmesssesassassnannes 47
FIPA-Rerated-Contract-Net Protocol........c.cc.vviiriceeemniinicnsinnniseiiccscssisniscnnaieesenmsnnenssnisescssasiesinnn 48
FIPA-Auction-English Protocol........eiciciinnniiiieeennereniisneessiessccnisssssenerenssannecscnses 49
FIPA-Auction-Dutch Protocol...........cceciniemeaiiimieencsssnnnnmeeninneemsanessiessseessssisssesnaseesnsissmsssssssssssasasss 50
Formal basis of ACL SemantiCs........cccccuecercniinnnsssmmenicestmnsissnnieniessssesorsisiensasissessasassassnasssesses 52
Introduction to formal model..............iiivicinnnnnen e asenasens 52
The SL LANQUAGE........ccccecvmmmieemmiinenisisiciatiissnisissssessessnmminssssaessssansanssansessnsessonsssssanssasst sassanas 53
Basis of the SL formalism........ccccciniriccnnnnicnsiimncemiscseiiennnsnmesmeeesensases s 53
AbDBreviations......c..ccinciri s i st s e s e as e e s et e es e ne re s s s aaennaae s 54
Underlying Semantic Model..............eovvimicciiinniciminnesieiiinreneetesnnasssecntsaectssonensssnncsesonnisssnes 55
ProPerty 1. ececeeeineeresstceiiistisseeeesiseeesssnssssesasanstssansassassessssastssssantsasensnsssanssssaassssnarssnansaes 55
PrOPEItY 2.....uiiciniemeiniantriianiaiesstsiasiisessssssunsssss e ssssesnssanssssasassonne snssasssssssssossnssnsastsnssnarasasntsse 56
PrOPErtY 3.t tutirs s ansns s e ra s eses s st s e s e s s usan s an e s smene R sa st e RO MR SO SRES R RO SOR R S bR SO RO R SR 56
PrOPerty Q... eeiiiciiisisnnresiessisisssassssessasessn s snnssssessreesatsanas ioanasssans snsssnssssnanananassanassnsanaensans 56
Property 5......o ettt s st srsnsaces s sse s assensasessannans s ssnissses e na st s s an et SR R e e nen sen 56
NOALION...... it tinscre e i s ore st se s sasessress s sesessssnnsessnsesaesnesnsacseseesasessarnannainonanesanssasane 56

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

8.5 Primitive Communicative ACtS..........ccccccvvcvccnniieinsnnnieeiiiniaiiiiissenseaisnsissnieesesssssasnssesssscssnsainenes 57
8.5.1 The assertive Inform........ccvvmviircsnsicscvcsennenicnnnns e eameai s e RS A AR RRS AR e 57
8.5.2 The directive Request...... eastsassaieeaseata s n e s O s R S e R e S ae e AR AR AR R RSSO AE SRR S Lk aOm e n e 57
8.5.3 Confirming an uncertain proposition: Confirm........ccccvevcrnrcneannces eresestrsissesssenanssanasiasannas 58
8.5.4 Contradicting knowledge: Disconfirm........ccciieeeriienminnnieneiierie i nn s 58
8.6 Composite Communicative ActS.........ceimeeeiirnerecnmnrrcmrcn e s s s s st e 58
8.6.1 The closed-qUEeSstion CASE.........c.omicrcrsreriessniseseneesenettsstnnsssestsesensasiessnrssne shssasssssssnssassnssnssnns 59
8.6.2 The qUErY-if BCT: ...t ssn s s s e st s sn e e s st s seesnas s seenas e snsmas s smesan s sass s e pa e s an s 60
8.6.3 The confirm/disconfirm-question Act:.......ccccccevmmiiriinieciiiinsscicsre st eensane s s asessananns 60
8.6.4 The open-quUESHION CASE:..........cccicvmeesuseriniiissirisestiiecenminsentieessssssnaosisssssssssnttssessanssnassasssasniessne 60
8.6.5 Summary definitions for all standard communicative acts.........ccciiiiisncncnsnnenn.
61

8.7 Inter-agent Communication Plans............iennnnncciinnsessensnsnas s s e e 65
9 REfEIENCES. ... cece e eciisisncs i asssann st s sm s s s se s e e s s e s saneasasa et sans e na e at e s ERme s e sa nananansanasrarsnnasenasane 66
Annex A (informative) ACL Conventions and EXamples...........ccccmmnmrnmmennnssesee e secennsssens 68
A1 CONVENIONS .ceeeieceeiimiiiiiirieisisesisasssssssssnnamses e sesesassasasasste e sEar e s mss s sansmnseaasasaanasass essrnsnannnnsenssasasantasnnnars 68
A.1.1 Conversations amongst multiple parties in agent communities.......cccvccnerrmrirssniisne 68
A.1.2 Maintaining threads of conversation........... eeesieessssiissaressEsesiisssessssssSEsessEessiSEREssseisisMseeissasiseRessaseiEsemEES 68
A.1.3 Initiating sub-conversations Within protocols.......... s e 69
A.14 Negotiating by exchange of goals...........cerimiincsniescetnnnees et s s s s s s ssnn s 69
A.2 Additional @XamPles........c..ccieriieisiniineimsniiiemssearenmaniinsiosnstsessssasastiaesssasssesssss s asaesssat sasesasasneat s ssssnenes 70
A2.1 ACHONS ANA FESURS.....e.oeeresesereessissessssessessssesssessssessesstssssesssesesesssessassssesassssssssenesssssssessssssassssssesssasans 70
Annex B (normative/informative) SL as a Content Language............cccceeeerrierinrccreiinnnnsetininanisassenissanes 72
B.1 Grammar for SL concrete SYyNtaX.......ccuucerrerreieresiniiicssissscniisneisnesssesssssessinnsessmssssssissssasssssses essesranes 72
B.1.1 Lexical definitions...........cccmmimmiiiniieninciensses e ssseentsmras e ssss e s snanssnentsesensanssessessinnssnsanasasnnsns s nsanaes 73

B.2 Notes on SL content language Semantics.........ciermiiincciiiniiisns s s s n s essss e e 74
B.2.1 Grammar entry point: SL content expression........c.cciverccrecrcmirnseeermsimiinsnsemnesinsees s e 74
B.2.2 SL Well-formed formula (SLWH).........cc.eeeruuseseisessesssmessasessassssssssssnssssssssss 74
B.2.3 SL Atomic FOrmuUIA.......... ettt s et s s s seassae st st s s s s s ss s st e m e 75
B.2.8 SL TelMcvoviosmeerrsssomssessessssmsesssssssssssssssssssssssssssssssses SR, e sseseenseeseene 75
B.2.5 Result predicate..............ccciieriiinircnnirssncsssninineneairennmsnssni st s st e e nnnaes teeeeserneeanenene 76
B.2.6 Actions and action eXpressions..........ccciiimemieiieneniiiiseeanieresssniesssss e neninessesstnasisassissssssessassassssssnsane 76
B.2.7 Agentidentifier..........ccccerrrimermimreisiiccinnnne evstEaetetiessiasaareerernrrasarrareaaas s arnenaRnRERt e neen e R s R ananns I 76
B.2.8 Numerical CoONStaNntS.......c.cccviimiiiiiiiiciiereticsssscsinesteetiesssssssssnanaestnesmsestessrersassossssmassttatseis s eessassasssansnass 76
B.3 Reduced expressivity subsets Of SL........ccimiiiinciiiiinainiirercssn s e st s 77
B.3.1 SLO: minimal SUDSEt Of SL......ccccccvmirmeriniiniiiiicnnisetenseenisssissetiissses s snsassssssssssessannensessasnessnas ussnes 77
B.3.2 SL1: propositional fOrm..........cciiiiiiiiiiicininneeniinecienesrmensierernssssessssnmsnisssssssass sess sassnssssnsass 77

http://216.239.57. 104/search?q=cache:Ep8p2thIKOJ -www_fipa.org/specs/fipa00018/0C000... 4/14/04

B.3.3 SL2: restrictions for decidability...........cceocmsmmicecmmmmmicsinrs e e s 78
Annex C (informative) Relationship of ACL to QML .c..coeveereererininanmtisssssasssrersosssnsrssnensinnsansassssasnssnssass renreeasan 80
C.1 Primary similarities and differences..............coivrccninimeiimnsiieeceoeee e e 80
C.2 Correspondence between KQML message performatives and FIPA CA's.........ovivrvennecenceininenicccenas
81

C.2.1 Agent management brimitives ... 81
C.2.2 Communications management...............ccoociiiiniciccsesnssniniessiseseesmrensenssssranmstssessssssrssssssansassnsersaes 81
C.2.3 Managing multiple SOIUtiONS.......c...ceerveieeiiiiiiiiiinsnnine s snereerencener s ent e sessesssenme s snanssssnsssssnssannne 81
C.2.4 Other discourse performatives........cccccvvermrrriisceecsserinnstiinieniiene e saassses 82
Annex D (informative) MIME-encoding to extend content descriptions....... e s et aes
83

D.1 Extension of FIPA ACL to include MIME headers.............cccccccviimemmeeenieariesiannsiiiiesimsnsimsmsssssasesmeesisesses 83
D.2 EXAMIPIE...creeeieciciiariciecssiseeiiss e sniiessasssssnnisenstissstsssssssssassamaassnesessnssnssnnt rasmatasesannnassnas s ussastnesanss s assnanassens 83

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0C000... 4/ 14/04

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is a non-profit association registered in Geneva,
Switzerland. FIPA’s purpose is to promote the success of emerging agent-based applications, services and
equipment. This goal is pursued by making available in a timely manner, internationally agreed specifications that
maximise interoperability across agent-based applications, services and equipment. This is realised through the
open international collaboration of member organisations, which are companies and universities active in the
agent field. FIPA intends to make the results of its activities available to all interested parties and to contribute the
results of its activities to appropriate formal standards bodies.

This specification has been developed through direct involvement of the FIPA membership. The 35 corporate
members of FIPA (October 1997) represent 12 countries from all over the world

Membership in FIPA is open to any corporation and individual firm, partnership, governmental body or
international organisation without restriction. By joining FIPA each Member declares himself individually and
collectively committed to open competition in the development of agent-based applications, services and
equipment. Associate Member status is usually chosen by those entities who do want to be members of FIPA
without using the right to influence the precise content of the specifications through voting.

The Members are not restricted in any way from designing, developing, marketing and/or procuring agent-based
applications, services and equipment. Members are not bound to implement or use specific agent-based
standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

This specification is published as FIPA 97 ver. 1.0 after two previous versions have been subject to public
comments following disclosure on the WWW. It has undergone intense review by members as well non-members.
FIPA is now starting a validation phase by encouraging its members to carry out field trials that are based on this
specification. During 1998 FIPA will publish FIPA 97 ver. 2.0 that will incorporate whatever adaptations will be
deemed necessary to take into account the results of field trials.

This document forms part two of the FIPA '97 specification. It should be read in conjunction with parts one (Agent
Management) and three (Agent/Software Interaction). Part One, Agent Management delails standards for agent
naming, message transport mechanisms and possible failures, and agent registration. Part Three, Agent/Software
Integration details how agent systems can inter-operate successfully with non-agent software systems, such as
databases and legacy applications. :

This release of part two of the FIPA 97 specification cancels and replaces all previous draft versions.

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J.www fipa.org/specs/fipa00018/0OC000... 4/14/04

r- - . [© - s - AT T RS g -

Introduction

The FIPA 97 specification is the first output of the Foundation for Intelligent Physical Agents. It provides
. specification of basic agent technologies that can be integrated by agent systems developers to make complex
systems with a high degree of interoperability.

FIPA specifies the interfaces of the different components in the environment with which an agent can interact, i.e.
humans, other agents, non-agent software and the physical world.

Information

Processing
& Information ¢
§ Fusion . 2

Agent Interaction
AT

Summary of agent interactions with their environment

FIPA produces two kinds of specification:

— normative specifications that mandate the external behaviour of an agent and ensure interoperability with
other FIPA-specified subsystems;

— informative specifications of applications for guidance to industry on the use of FIPA technologies.

The first set of specifications — called FIPA 97 — has seven parts:

— three normative parts for basic agent technologies: agent management, agent communication language
and agent/software integration

— four informative application descriptions that provide examples of how the normative items can be applied:
personal travel assistance, personal assistant, audio-visual entertainment and broadcasting and network
management and provisioning.

Overall, the three FIPA 97 technologies allow:

— the construction and management of an agent system composed of different agents, possibly built by
different developers;

— agents to communicate and interact with each other to achieve individual or common goals;

— legacy software or new non-agent software systems to be used by agents.

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www.fipa.org/specs/fipa00018/0CO000... 4/14/04

A brief summary of the FIPA 97 specification is given below.
Part 1 Agent Management

This part of FIPA 97 provides a normative framework within which FIPA compliant agents can exist, operate and
be managed. It defines an agent platform reference model containing such capabilities as white and yellow
pages, message routing and life-cycle management. True to the FIPA approach, these capablities are themselves
intelligent agents using formally sound communicative acts based on special message sets. An appropriate
ontology and content language allows agents to discover each other’s capabilities.

Part 2 Agent Communication Language

The FIPA Agent Communication Language (ACL) is-based on speech act theory: messages are actions, or
communicative acts, as they are intended to perform some action by virtue of being sent. The specification
consists of a set of message types and the description of their pragmatics, that is the effects on the mental
attitudes of the sender and receiver agents. Every communicative act is described with both a narrative form and
a formal semantics based on modal logic.

The specifications include guidance to users who are already familiar with KQML in order to facilitate migration to
the FIPA ACL.

The specification also provides the normative description of a set of high-level interaction protocols, including
requesting an action, contract net and several kinds of auctions.

Part 3 Agent/Software Integration

This part applies to any other non-agentised software with which agents need to “connect’. Such software
includes legacy software, conventional database systems, middleware for all manners of interaction including
hardware drivers. Because in most significant applications, non-agentised software may dominate software
agents, part 3 provides important normative statements. It suggests ways by which Agents may connect to
software via “wrappers” including specifications of the wrapper ontology and the software dynamic registration
mechanism. For this purpose, an Agent Resource Broker (ARB) service is defined which allows advertisement of
non-agent services in the agent domain and management of their use by other agents, such as negotiation of
parameters (e.g. cost and priority), authentication and permission.

Part 4 - Personal Travel Assistahce

The travel industry involves many components such as content providers, brokers, and personalization services,
typically from many different companies. In applying agents to this industry, various implementations from various
vendors must interoperate and dynamically discover each other as different services come and go. Agents
operating on behalf of their users can provide assistance.in the pre-trip planning phase, as well as during the on-
trip execution phase. A system supporting these services is called a PTA (Personal Travel Agent).

In order to accomplish this assistance, the PTA interacts with the user and with other agents, representing the
available travel services. The agent system is responsible for the configuration and delivery - at the right time,
cost, Quality of Service, and appropriate security and privacy measures - of trip planning and guidance services. It
provides examples of agent technologies for both the hard requirements of travel such as airline, hotel, and car
arrangements as well as the soft added-value services according to personal profiles, e.g. interests in sports,
theatre, or other attractions and events.

Part 5 - Personal Assistant

One central class of intelligent agents is that of a personal assistant (PA). It is a software agent that acts semi-
autonomously for and on behalf of a user, modelling the interests of the user and providing services to the user or
other people and PAs as and when required. These services include managing a user's diary, filtering and sorting
e-mail, managing the user's activities, locating and delivering (multimedia) information, and planning
entertainment and travel. It is like a secretary, it accomplishes routine support tasks to allow the user to
concentrate on the real job, it is unobtrusive but ready when needed, rich in knowledge about user and work.
Some of the services may be provided by other agents (e.g. the PTA) or systems, the Personal Assistant acts as
an interface between the user and these systems.

In the FIPA'97 test application, a Personal Assistant offers the user a unified, intelligent interface to the
management of his personal meeting schedule. The PA is capable of setting up meetings with several
participants, possibly involving travel for some of them. In this way FIPA is opening up a road for adding
interoperability and agent capabilities to the already established

http://216.239.57.104/search?q=cache:Ep8p2hgO0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

Part 6 - Audio/Video Entertainment & Broadcasting

An effective means of information filtering and retrieval, in particular for digital broadcasting networks, is of great
importance because the selection and/or storage of one’s favourite choice from plenty of programs on offer can
be very impractical. The information should be provided in a customised manner, to better suit the user’s personal
preferences and the human interaction with the system should be as simple and intuitive as possible. Key
functionalities such as profiling, filtering, retrieving, and interfacing can be made more effective and reliable by the
use of agent technologies.

Overall, the application provides to the user an intelligent interface with new and improved functionalities for the
negotiation, filtering, and retrieval of audio-visual information. This set of functionalities can be achieved by
collaboration between a user agent and content/service provider agent.

Part 7 - Network management & provisiohing

Across the world, numerous service providers emerge that combine service elements from different network
providers in order to provide a single service to the end customer. The ultimate goal of all parties involved is to
find the best deals available in terms of Quality of Service and cost. Intelligent Agent technology is promising in
the sense that it will facilitate automatic negotiation of appropriate deals and configuration of services at different
levels.

Part 7 of FIPA 97 utilizes agent technology to provide dynamic Virtual Private Network (VPN) services where a
user wants to set up a multi-media connection with several other users.

The service is delivered to the end customer using co-operating and negotiating specialized agents. Three types
of agents are used that represent the interests of the different parties involved:

— agents to communicate and interact with each other to achieve individual or common goals;
— The Service Provider Agent (SPA) that represents the interests of the Service Provider.
— The Network Provider Agent (NPA) that represents the interests of the Network Provider.

The service is established by the initiating user who requests the service from its PCA. The PCA negotiates in
with available SPAs to obtain the best deal available. The SPA will in turn negotiate with the NPAs to obtain the
optimal solution and to configure the service at network level. Both SPA and NPA communicate with underlying
service- and network management systems to configure the underlying networks for the service.

Document history ,

This document is release 1.0 of part 2 of the FIPA 97 standard. Draft versions of this document have been
reviewed within FIPA and by the agent community. Changes from previous draft versions are not recorded here.
However, future revisions will be noted in this section.

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0OC000... 4/14/04

1 Scope

“Language is a very difficult thing to put into words” — Voltaire

This document forms part two of the FIPA 97 specification for interoperable agents and agent societies. In
particular, this document lays out underlying principles and detailed requirements for agents to be able to
communicate with each other using messages representing communicative acts, independently of the specific
agent implementations.

The document lays out, in the sections below, the following:
— A core set of communicative acts, their meaning and means of composition;

— Common patterns of usage of these communicative acts, including standard composite messages, and
standard or commonly used interaction protocols;

— Adetailed semantic description of the underlying meaning of the core set of message primitives;

— A summary of the relationship between the FIPA ACL and widely used de facto standard agent
communication language KQML.

Objectives of this document

This document is intended to be directly of use to designers, developers and systems architects attempting to
design, build and test agent applications, particularly communities of multiple agents. It aims to lay out clearly the
practical components of inter-agent communication and co-operation, and explain the underlying theory. Beyond
a basic appreciation of the model of agent communication, readers can make practical use of the ACL
specification without necessarily absorbing the detail of the formal basis of the language.

However, the language does have a well-defined formal semantic foundation. The intention of this semantics is
that it both gives a deeper understanding of the meaning of the language to the formally inclined, and provides an
unambiguous reference point. This will be of increasing importance as agents, independently developed by
separate individuals and teams, attempt to inter-operate successfully.

This part of the FIPA 97 specification defines a language and supporting tools, such as protocols, to be used by
intelligent software agents to communicate with each other. The technology of software agents imposes a high-
level view of such agents, deriving much of its inspiration from social interaction in other contexts, such as
human-to-human communication. Therefore, the terms used and the mechanisms used support such a higher-
level, often task based, view of interaction and communication. The specification does not attempt to define the
low and intermediate level services often associated with communication between distributed software systems,
such as network protocols, transport services, etc. Indeed, the existence of such services used to physically
convey the byte sequences comprising the inter-agent communication acts are assumed.

No single, universal definition of a software agent exists, nor does this specification attempt to define one.
However, some characteristics of agent behaviour are commonly adopted, and the communication language
defined in this specification sets out to support and facilitate these behaviours. Such characteristics include, but
are not limited to: '

— Goal directed behaviour;

— Autonomous determination of courses of action;

— Interaction by negotiation and delegation;

— Modelling of anthropomorphic mental attitudes, such as beliefs, intentions, desires, plans and commitments;
— Flexibility in responding to situations and needs.

No expectation is held that any given agent will necessarily embody any or all of these characteristics. However, it
is the intention of this part of the specification that such behaviours are supported by the communication language
and its supporting framework where appropriate.

Note on conformance to the underlying semantic model

The semantic model described in this document is given solely as an informative reference point for agent behaviour, as there
is currently no agreed technology for compliance testing against the semantics of the epistemic operators used in the model.

http://216.239.57.104/search?q=cache:Ep8p2hg0IK 0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

This is due to the ditficulty of verifying that the mental attitudes of an agent conform to the specification, without dictating the
agent's intemal architecture or underlying implementation model. As such, the semantics cannot be considered normative until
_the issue of compliance testing is resolved. Such tests will be the subject of further FIPA work.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties o agreements based on this specification are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid specifications.

ISO/IEC 2022; Information technology - Character code.
FIPA 97 specification — Part 1: Agent Management.
FIPA 97 specification — Part 3: Agent/Software Integration.

http://216.239.57.104/search?q=cache: Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

3 Terms and definitions

For the purposes of this specification, the following terms and definitions apply:
Action

A basic construct which represents some activity which an agent may perform. A special class of actions is the
communicative acts.

ARB Agent

An agent which provides the Agent Resource Broker (ARB) service. There must be at least one such an agent in
each Agent Platform in order to allow the sharing of non-agent services.

Agent

An Agent is the fundamental actor in a domain. It combines one or more service capabilities into a unified and
integrated execution model which can include access to external software, human users and communication
facilities. '

Agent Communication Language (ACL)

A language with precisely defined syntax, semantics and pragmatics that is the basis of communication between
independently designed and developed software agents. ACL is the primary subject of this part of the FIPA
specification.

Agent Communication Chapnel (ACC) Router

The Agent Communication Channel is an agent which uses information provided by the Agent Management
System to route messages between agents within the platform and to agents resident on other platforms.

Agent Management System (AMS)

The Agent Management System is an agent which manages the creation, deletion, suspension, resumption,
authentication and migration of agents on the agent platform and provides a “white pages” directory service for all
agents resident on an agent platform. It stores the mapping between globally unique agent names (or GUID) and
local transport addresses used by the platform.

Agent Platform (AP)

An Agent Platform provides an infrastructure in which agents can be deployed. An agent must be registered on a
platform in order to interact with other agents on that platform or indeed other platforms. An AP consists of three
capability sets ACC, AMS and default Directory Facilitator.

Communicative Act (CA)

A special class of actions that correspond to the basic building blocks of dialogue between agents. A
communicative act has a well-defined, declarative meaning independent of the content of any given act. CA's are
modelled on speech act theory. Pragmatically, CA's are performed by an agent sending a message to another
agent, using the message format described in this specification.

Content

That part of a communicative act which represents the domain dependent component of the communication. Note
that "the content of a message” does not refer to "everything within the message, including the delimiters”, as it
does in some languages, but rather specifically to the domain specific component. In the ACL semantic model, a
content expression may be composed from propositions, actions or IRE's.

Conversation

An ongoing sequence of communicative acts exchanged between two (or more) agents relating to some ongoing
topic of discourse. A conversation may (perhaps implicitly) accumulate context which is used to determine the
meaning of later messages in the conversation.

Software System

http://216.239.57. 104/§earch?q=cache:Ep8p2thIKOJ -www.fipa.org/specs/fipa00018/0C000... 4/14/04

A software entity which is not conformant to the FIPA Agent Management specification.
CORBA:

Common Object Request Broker Architecture, an established standard allowing object-oriented distributed
systems to communicate through the remote invocation of object methods.

Directory Facilitator (DF)

The Directory facilitator is an agent which provides a “yellow pages” directory service for the agents. It store
descriptions of the agents and the services they offer.

Feasibility Precondition (FP)

The conditions (i.e. one or more propositions) which need be true before an agent can (plan to) execute an action.
lllocutionary effect

See speech act theory.

Knowledge Querying and Manipulation Language (KQML)

A de facto (but widely used) specification of a language for inter-agent communication. In practice, several
implementations and variations exist.

Local Agent Platform

The Local Agent Platform is the AP to which an aget is attached and which represents an ultimate destination for
messages directed to that agent. :

Message

An individual unit of communication between two or more agents. A message corresponds to a communicative
act, in the sense that a message encodes the communicative act for reliable transmission between agents. Note
that communicative acts can be recursively composed, so while the outermost act is directly encoded by the
message, taken as a whole a given message may represent multiple individual communicative acts.

Message content
See content.
Message transport service

The message transport service is an abstract service provided by the agent management platform to which the
agent is (currently) attached. The message transport service provides for the reliable and timely delivery of
messages to their destination agents, and also provides a mapping from agent logical names to physical transport
addresses. :

Ontology

An ontology gives meanings to symbols and expressions within a given domain language. In order for a message -
from one agent to be properly understood by another, the agents must ascribe the same meaning to the
constants used in the message. The ontology performs the function of mapping a given constant to some well-
understood meaning. For a given domain, the ontology may be an explicit construct or implicitly encoded with the
implementation of the agent.

Ontology sharing problem

The problem of ensuring that two agents who wish to converse do, in fact, share a common ontology for the
domain of discourse. Minimally, agents should be able to discover whether or not they share a mutual
understanding of the domain constants. Some research work is addressing the problem of dynamically updating
agents' ontologies as the need arises. This specification makes no provision for dynamically sharing or updating
ontologies.

Perlocutionary Effect

See speech act theory.

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0CO000... 4/14/04

Proposition

A statement which can be either true or false. A closed proposition is one which contains no variables, other than
those defined within the scope of a quantifier.

Protocol

A common pattern of conversations used to perform some generally useful task. The protocol is often used to
facilitate a simplification of the computational machinery needed to support a given dialogue task between two
agents. Throughout this document, we reserve protocol to refer to dialogue patterns between agents, and
networking protocol to refer to underlying transport mechanisms such as TCP/IP.

Rational Effect (RE)

The rational effect of an action is a representation of the effect that an agent can expect to occur as a result of the
action being performed. In particular, the rational effect of a communicative act is the perlocutionary effect an
agent can expect the CA to have on a recipient agent.

Note that the recipient is not bound to ensure that the expected effect comes about; indeed it may be impossible
for it to do so. Thus an agent may use its knowledge of the rational effect in order to plan an action, but it is not
entitled to believe that the rational effect necessarily holds having performed the act.

Speech Act Theory

A theory of communications which is used as the basis for ACL. Speech act theory is derived from the linguistic
analysis of human communication. It is based on the idea that with language the speaker not only makes
statements, but also performs actions. A speech act can be put in a stylised form that begins "I hereby request
..." or "l hereby declare ...". In this form the verb is called the performative, since saying it makes it so. Verbs that
cannot be put into this form are not speech acts, for example "I hereby solve this equation" does not actually
solve the equation. [Austin 62, Searle 69].

In speech act theory, communicative acts are decomposed into locutionary, illocutionary and perlocutionary acts.
Locutionary acts refers to the formulation of an utterance, illocutionary refers to a categorisation of the utterance
from the speakers perspective (e.g. question, command, query, etc), and perlocutionary refers to the other
intended effects on the hearer. In the case of the ACL, the perlocutionary effect refers to the updating of the
agent's mental attitudes. -

Software Service

An instantiation of a connection to a software system.

TCPAP

A networking protocol used to establish connections and transmit data between hosts
Wrapper Agent

An agent which provides the FIPA-WRAPPER service to an agent domain on the Internet.

4 Symbols (and abbreviated terms)

ACC: Agent Communication Channel

ACL: Agent Communication Language

AMS: Agent Management System

AP: Agent Platform

API: Application Programming Interface

ARB: Agent Resource Broker

CA: Communicative Act

CORBA: Common Object Request Broker Architecture

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

DCOM: Distributed COM

DF: Directory Facilitator

FIPA: Foundation for Intelligent Physical Agents

FP: Feasibility Precondition

GUID: Global Unique Identifier

HAP: Home Agent Platform

HTTP: Hypertext Transmission Protocol

IDL: Interface Definition Language

oP: Internet Inter-ORB Protocol

OMG: Object Management Group

ORB: Object Request Broker

RE: Rational Effect

RMI: Remote Method Invocation, an inter-process communication method embodied in Java
SL: Semantic Language

SMTP: Simple Mail Transfer Protocol

TCP/IP: Transmission Control Protocol / Internet Protocol

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

5 Overview of Inter-Agent Communication

5.1 Introduction

This specification document does not define in a precise, prescriptive way what an agent is nor how it should be
implemented. Besides the lack of a general consensus on this issue in the agent research community, such
definitions frequently fall into the trap of being overly restrictive, ruling out some software constructs whose
developers legitimately consider to be agents, or else overly weak and of little assistance to the reader or
software developer. A goal of this specification is to be as widely applicable as possible, so the stance taken is to
define the components as precisely as possible, and allow applicability in any particular instance to be decided by
the reader.

Nevertheless, some position must be taken on some of the characteristics of an agent, that it, on what an agent
can do, in order that the specification can specify a means of doing it. This position is outlined here, and consists
of an abstract characterisation of agent properties, and a simple abstract model of inter-agent communication.

The first characteristic assumed is that agents are communicating at a higher level of discourse, i.e. that the
contents of the communication are meaningful statements about the agents' environment or knowledge. This is
one characteristic that differentiates agent communication from, for example, other interactions between strongly
encapsulated computational entities such as method invocation in CORBA.

In order for this discourse to be given meaning, some assumptions have to be made about the agents. In this
specification, an abstract characterisation of agents is assumed, in which some core capabilities of agents are
described in terms of the agent's mental attitudes. This characterisation or model is intended as an abstract
specification, i.e. it does not pre-determine any particular agent implementaton model nor a cognitive
architecture.

More specifically, this specification characterises an agent as being able to be described as though it has mental
attitudes of:

— Belief, which denotes the set of propositions (statements which can be true or false) which the agent
accepts are (currently) true; propositions which are believed false are represented by believing the
negation of the proposition.

— Uncertainty, which denotes the set of propositions which the agent accepts are (currently) not known to
be certainly true or false, but which are held to be more likely to be true than false; propositions which
are uncertain but more likely to be false are represented by being uncertain of the negation of the
proposition. Note that this aftitude does not prevent an agent from adopting a specific uncertain
information formalism, such as probability theory, in which a proposition is believed to have a certain
degree of support. Rather the uncertainty attitude provides a least commitment mechanism for agents
with differing representation schemes to discuss uncertain information.

— Intention, which denotes a choice, or property or set of properties of the world which the agent desires
to be true and which are not currently believed to be true. An agent which adopts an intention will form a
plan of action to bring about the state of the world indicated by its choice.

Note that, with respect to some given propasition p, the attitudes of believing p, believing not p, being uncertain of
p and being uncertain of not p are mutually exclusive.

In addition, agents understand and are able to perform certain actions. In a distributed system, an agent typically
will only be able to fulfil its intentions by influencing other agents to perform actions.

Influencing the actions of other agents is performed by a special class of actions, denoted communicative acts. A
communicative act is performed by one agent towards another. The mechanism of performing a communicative
act is precisely that of sending a message encoding the act. Hence the roles of initiator and recipient of the
communicative act are frequently denoted as the sender and receiver of the message, respectively.

Building from a well-defined core, the messages defined in this specification represent a set of communicative
acts that attempt to seek a balance between generality, expressive power and simplicity, together with perspicuity
to the agent developer. The message type defines the communicative action that is being performed. Together
with the appropriate domain knowledge, the communicative act allows the receiver to determine the meaning of
the contents of the message.

http://216.239.57.104/search?q=cache:Ep8p2hgO0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

The meanings of the communicative acts given in §6.5 are given in terms of the pre-conditions in respect to the
sender's mental attitudes, and the expected (from the sender's point of view) consequences on the receiver's
mental attitudes. However, since the sender and receiver are independent, there is no guarantee that the
expected consequences come to pass. For example, agent i may believe that "it is better to read books than to
watch TV", and may intend jto come to believe so also. Agent i will, in the ACL, inform j of its belief in the truth of
that statement. Agent j will then know, from the semantics of inform, that i intends it to believe in the value of
books, but whether jcomes itself to believe the proposition is a matter for jalone to decide.

This specification concerns itself with inter-agent communication through message passing. Key sections of the
discussion are as follows:

— §5.2 discusses the transportation of messages between agents;

— §6.3 introduces the structure of messages;

— §6.4 gives a standard transport syntax for transmitting ACL messages over simple byte streams;
— §6.5 catalogues the standardised communicative acts and their representation as messages;

— §7 introduces and defines a set of communication protocols to simplify certain common sequences of
messages; '

— §8 formally defines the underlying communication model.

5.2 Message Transport Mechanisms

For two agents to communicate with each other by exchanging messages, they must have some common
meeting point through which the messages are delivered. The existence and properties of this message transport
service are the remit of FIPA Technical Committee 1: Agent Management.

The ACL presented here takes as a position that the contribution of agent technology to complex system
behaviour and inter-operation is most powerfully expressed at what, for the lack of a better term, may be called
the higher levels of interaction. For example, this document describes communicative acts for informing about
believed truths, requesting complex actions, protocols for negotiation, etc. The interaction mechanisms presented
here do not compete with, nor should they be compared to, low-level networking protocols such as TCP/IP, the
OS| seven layer model, etc. Nor do they directly present an aiternative to CORBA, Java RMI or Unix RPC
mechanisms. However, the functionality of ACL does, in many ways overlap with the foregoing examples, not
least in that ACL messages may often be expected to be delivered via such mechanisms.

The ACL’s role may be further clarified by consideration of the FIPA goal of general open agent systems. Other
mechanisms, notably CORBA, share this goal, but do so by imposing certain restrictions on the interfaces
exposed by objects. History suggests that agents and agent systems are typically implemented with a greater
variety of interface mechanisms; existing example agents include those using TCP/IP sockets, HTTP, SMTP and
GSM short messages. ACL respects this diversity by attempting to minimise requirements on the message
delivery service. Notably, the minimal message transport mechanism is defined as a textual form delivered over a
simple byte stream, which is also the approach taken by the widely used KQML agent communication
language. A potential penalty for this inclusive approach is upon very high-performance systems, where message
throughput is pre-eminent. Future versions of this specification may define alternative transport mechanism
assumptions, including other transport syntaxes, which meet the needs of very high performance systems.

Currently, the ACL imposes a minimal set of requirements on the message transport service, as shown below:

a) The message service is able to deliver a message, encoded in the transponrt forr'h below, to a destination as
a sequence of bytes. The message service exposes through its interface whether it is able to cope reliably
with 8-bit bytes whose high-order bit may be set.

b) The normal case is that the message service is reliable (well-formed messages will arrive at the destination)
accurate (the message is received in the form in which it was sent), and orderly (messages from agent a to
agent b arrive at b in the order in which they were sent from all). Unless informed otherwise, an agent is
entitled to assume that these properties hold.

c) If the message delivery service is unable to guarantee any or all of the above properties, this fact is exposed
in some way through the interface to the message delivery service

d) An agent will have the option of selecting whether it suspends and waits for the result of a message

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

(synchronous processing) or continues with other unrelated tasks while waiting for a message reply
(asynchronous processing). The availability of this behaviour will be implementation specific, but it must be
made explicit where either behaviour is not supported. .

e) Parameters of the act of delivering a message, such as time-out if no reply, are not codified at the message
level but are part of the interface exposed by the message delivery service.

f) The message delivery service will detect and report error conditions, such as: ill-formed message,
undeliverable, unreachable agent, etc., back to the sending agent. Depending on the error condition, this
may be returned either as a return value from the message sending interface, or through the delivery of an
appropriate error message.

g) An agent has a name which will allow the message delivery service to deliver the message to the correct
destination. The message delivery service will be able to determine the correct transport mechanism
(TCP/IP, SMTP, http, etc.), and will allow for changes in agent location, as necessary.

The agent will, in some implementation specific way, have an structure which corresponds to a message it wishes
to send or has received. The syntax shown below in this document defines a transport form, in which the
message is mapped from its internal form to a character sequence, and can be mapped back to the internal
message form from a given character sequence. Note again the absence of architectural commitment: the internal
message form may be a explicit data structure, or it may be implicit in the way that the agent handles its
messages.

For the purposes of the transport services, the message may be assumed to be an opaque byte stream, with the
exception that it is possible to extract the destination of the message.

At this transport level, messages are assumed to be encoded in 7-bit characters according to the ISO/IEC 2022
standard. This specification allows the expression of characters in extended character sets, such as Japanese.
The FIPA specification adopts the position that the default character mapping is US ASCII. More specifically, all
ACL compliant agents should assume that, when communication is commenced:

— ISO/IEC 646 (US ASCII) is designated to GO;
— ISO/IEC 6429 CO is designated;

— GOisinvoked in GL;

— COis invoked in CL.;

— SPACE in 2/0 (0x20) and

— DELETE in 7/15 (0x7f)

Some transport services will be able to transport 8-bit characters safely, and, where this service is available, the
agent is free to make use of it. However, safe transmission of 8-bit characters is not universally assumed.

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J. www fipa.org/specs/fipa00018/0C000... 4/14/04

6 FIPA ACL Messages

6.1 Preamble

This section defines the individual message types that are central to the ACL specification. In particular, the form
of the messages and meaning of the message types are defined. The message types are a reference to the
semantic acts defined in this specification. These types impart a meaning to the whole message, that is, the act
and the content of the message, which extends any intrinsic meaning that the content itself may have.

For example, if i informs j that “Bonn is in Germany”, the content of the message from i to j is “Bonn is in
Germany”, and the act is the act of informing. “Bonn is in Germany” has a certain meaning, and is true under any
reasonable interpretation of the symbols “Bonn” and “Germany”, but the meaning of the message includes effects
on (the mental attitudes of) agents / and j. The determination of this effect is essentially a private matter to both i
and j, but for meaningful communication to take place, some reasonable expectations of those effects must be
fulfilled.

Clearly, the content of a message may range over an unrestricted range of domains. This specification does not
mandate any one formalism for representing message content. Agents themselves must arrange to be able to
interpret any given message content correctly. Note that this version of the specification does not address the
ontology sharing problem, though future versions may do so. The specification does set out to specify the
meanings of the acts independently of the content, that is, extending the above example, what it means to inform
or be informed. In particular, a set of standard communicative acts and their meanings is defined.

It may be noted, however, that there is a trade-off between the power and specificity of the acts. Notionally, a
large number of very specific act types, which convey nuances of meaning, can be considered equivalent to a
smaller number of more general ones, but they place different representational and implementation constraints on
the agents. The goals of the set of acts presented here are (i) to cover, overall, a wide range of communication
situations, (ii) not to overtax the design of simpler agents intended to fulfil a specific, well-defined purpose, and (jii)
to minimise redundancy and ambiguity, to facilitate the agent to choose which communicative act to employ.
Succinctly, the goals are: completeness, simplicity and conciseness.

The fundamental view of messages in ACL is that a message represents a communicative act. For purposes of
elegance and coherency, the treatment of communicative acts during dialogue should be consistent with the
treatment of other actions; a given communicative action is just one of the actions that an agent can perform. The
term message then plays two distinct roles within this document, depending on context. Message can be a
synonym for communicative act, or it may refer to the computational structure used by the message delivery
service to convey the agent's utterance to its destination.

The communication language presented in this specification is based on a precise formal semantics, giving an
unambiguous meaning to communicative actions. In practice, this formal basis is supplemented with pragmatic
extensions that serve to ease the practical implementation of effective inter-agent communications. For this
reason, the message parameters defined below are not defined in the formal semantics in §8, but are defined in
narrative form in the sections below. Similarly, conventions that agents are expected to adopt, such as protocol of
message exchange, are given an operational semantics in narrative form only.

6.2 Requirements on agents
This document introduces a set of pre-defined message types and protocols that are available for ail agents to

use. However, it is not required for all agents to implement all of these messages. In particular, the minimal
requirements on FIPA ACL compliant agents are as follows:

Requirement 1:

Agents should send not-understood if they receive a message that they do not recognise or they are unable to
process the content of the message. Agents must be prepared to receive and properly handle a not-
understood message from other agents.

Requirement 2:

An ACL compliant agent may choose to implement any subset (including all, though this is unlikely) of the pre-
defined message types and protocols. The implementation of these messages must be correct with respect to
the referenced act's semantic definition.

Requirement 3:

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

An ACL combliant agent which uses the communicative acts whose names are defined in this specification
must implement them correctly with respect to their definition.

Requirement 4:

Agents may use communicative acts with other names, not defined in this document, and are responsible for
ensuring that the receiving agent will understand the meaning of the act. However, agents should not define
new acts with a meaning that matches a pre-defined standard act.

Requirement 5:

An ACL compliant agent must be able to correctly generate a syntactically well formed message in the
transport form that corresponds to the message it wishes to send. Symmetrically, it must be able to translate a
character sequence that is well-formed in the transport syntax to the corresponding message.

6.3 Message structure
This section introduces the various structural elements of a message.

6.3.1 Overview of ACL messages
The following figure summarises the main structural elements of an ACL message:

Figure 1 — Components of a message

ACL massage
Bagin massage struc&arerj'(infom /.Message content sxpression
/: sender agentl
:receiver hpl-auction-server
:content
Compainicative act /
rminicative act{ype (price (bid good02) 150) _
:in-reply-to round-4 /.,Parmmter 8xXprassion
/': reply-with bid04
/ :_1anguage sl
Message paramaeter :ontology hpl-auction
)

In their transport form, messages are represented as s-expressions. The first element of the message is a word
which identifies the communicative act being communicated, which defines the principal meaning of the message.
There then follows a sequence of message parameters, introduced by parameter keywords beginning with a
colon character. No space appears between the colon and the parameter keyword. One of the parameters
contains the content of the message, encoded as an expression in some formalism (see below). Other
parameters help the message transport service to deliver the message correctly (e.g. sender and receiver), help
the receiver to interpret the meaning of the message (e.g. language and ontology), or help the receiver to respond
co-operatively (e.g. reply-with, reply-by).

It is this transport form that is serialised as a byte stream and transmitted by the message transport service. The
receiving agent is then responsible for decoding the byte stream, parsmg the components message and
processing it correctly.

Note that the message's communicative act type corresponds to that which in KQML is called the performative2).

6.3.2 Message parameters

As noted above, the message contains a set of one or more parameters. Parameters may occur in any order in
the message. The only parameter that is mandatory in all messages is the :receiver parameter, so that the
message delivery service can correctly deliver the message. Clearly, no useful message will contain only the
receiver. However, precisely which other parameters are needed for effective communication will vary according
to the situation.

The full set of pre-defined message parameters is shown in the following table:

Table 1 — Pre-defined message parameters

http://216.239.57.104/search?q=cache: Ep8p2hg0IK 0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

Message Parameter: Meaning:

:sender Denotes the identity of the sender of the message, i.e.
the name of the agent of the communicative act.

:receiver Denotes thé identity of the intended recipient of the
message.

Note that the recipient may be a single agent name, or
a tuple of agent names. This corresponds to the action
of multicasting the message. Pragmatically, the
semantics of this multicast is that the message is sent
to each agent named in the tuple, and that the sender
intends each of them to be recipient of the CA encoded
in the message. For example, if an agent performs an
inform act with a tuple of three agents as receiver, it
denotes that the sender intends each of these agent to
come to believe the content of the message.

:content Denotes the content of the message; equivalently
denotes the object of the action.

:reply-with Introduces an expression which will be used by the
agent responding to this message to identify the original
message. Can be used to follow a conversation thread
in a situation where multiple dialogues occur
simultaneously.

E.g. if agent i sends to agent j a message which
contains
:reply-with queryl,
agent j will respond with a message containing
:in-reply-to queryl.

:in-reply-to Denotes an expression that references an earlier action
to which this message is a reply.

:envelope Denotes an expression that provides useful information
about the message as seen by the message transport
service. The content of this parameter is not defined in
the specification, but may include time sent, time
received, route, etc.

The structure of the envelope is a list of keyword value
pairs, each of which denotes some aspect of the
message service.

:language Denotes the encoding scheme of the content of the
action.

:ontology Denotes the ontology which is used to give a meaning
to the symbols in the content expression.

:reply-by Denotes a time and/or date expression which indicates
a guideline on the latest time by which the sending
agent would like a reply.

:protocol Introduces an identifier which denotes the protocol
which the sending agent is employing. The protocol
serves to give additional context for the interpretation of
the message. Protocols are discussed in §7.

:conversation-id Introduces an expression which is used to identify an
ongoing sequence of communicative acts which

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

together form a conversation. A conversation may be
used by an agent to manage its communication
strategies and activities. In addition the conversation
may provide additional context for the interpretation of
the meaning of a message.

6.3.3 Message content

The content of a message refers to whatever the communicative act applies to. If, in general terms, the
communicative act is considered as a sentence, the content is the grammatical object of the sentence. In general,
the content can be encoded in any language, and that language will be denoted by the : language parameter.
The only requirement on the content language is that it has the following properties:

Requirement 6:

In general, a content language must be able to express propositions, objects and actions. No other properties
are required, though any given content language may be much more expressive than this. More specifically,
the content of a message must express the data type of the action: propositions for inform, actions for
request, etc.

— A proposition states that some sentence in a language is true or false. An object, in this context, is a

construct which represents an identifiable "thing" (which may be abstract or concrete) in the domain of
discourse. Object in this context does not necessarily refer to the specialised programming constructs
that appear in object-oriented languages like C++ and Java. An action is a construct that the agent will
interpret as being an activity which can be carried out by some agent. In general, an action does not
produce a result which is communicated to another agent (but see, for example, §
(iota <variable> <term>)
The iota operator introduces a scope for the given expression (which denotes a term), in which the given
identifier, which would otherwise be free, is defined. An expression containing a free variable is not a
well-formed SL expression. The expression “(iota x (P x)" may be read as "the x such that P [is true] of x.
The iota operator is a constructor for terms which denote objects in the domain of discourse.

B.2.5).

Except in the special case outlined below, there is no requirement that message content languages conform to
any well known (pre-defined) syntax. In other words, it is the responsibility of the agents in a dialogue to ensure
that they are using a mutually comprehensible content language. This FIPA specification does not mandate the
use of any particular content language. One suggested content language formalism is shown in Annex B. There
are many ways to ensure the use of a common content language. It may be arranged by convention (e.g. such-
and-such agents are well known always to use Prolog), by negotiationll among the parties, or by employing the
services of an intermediary as a translator. Similarly, the agents are responsible for ensuring that they are using a
common ontology.

The most general case is that of negotiating (i.e. jointly deciding) a content language. However, the agent must
overcome the problem of being able to begin the conversation in the first place, in order that they can then
negotiate content language. There has to be a common point of reference, known in advance to both parties.
Thus, for the specific purpose of registering with a directory facilitator and performing other key agent
management functions, the specification does include the following content language definition:

Definition 1:

The FIPA specification agent management content language is an s-expression notation used to express the
propositions, objects and actions pertaining to the management of the agent's lifecycle. The terms in the
expression are defined operationally in part one of the FIPA 97 specification.

Requirement 7: .

A compliant agent is required to exercise the standard agent management capabilities through the use of
messages using the agent management content language and ontology. The language and ontology are each
denoted by the reserved term fipa-agent-management in their respective parameters.

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www. fipa.org/specs/fipa00018/0C000... 4/14/04

6.3.4 Representing the content of messages

As noted above, the content of a message refers to the domain expression which the communicative act refers to.
It is encoded in the message as the value of the :content parameter. The FIPA specification does not mandate
any particular content encoding language (i.e. the representation form of the :content expression) on a normative -
basis. The SL content language is provided in Annex B on an informative basis.

To facilitate the encoding of simple languages (that is, simple in their syntactic requirements), the s-expression
form included in the ACL grammar shown below allows the construction of s-expressions of arbitrary depth and
complexity. A language which is defined as a sub-grammar of the general s-expression grammar is therefore
admissible as a legal ACL message without modification. The SL grammar shown in Annex B is an example of
exactly this approach.

However, agents commonly need to embed in the body of the message an expression encoded in a notation
other than the simple s-expression form used for the messages themselves. The ACL grammar provides two
mechanisms, both of which avoid the problem of an ACL parser being required to parse any expression in any
language:

— Wrap the expression in double quotes, thus making it a string in ACL syntax, and protect any embedded
double quote in the embedded expression with a backslash. Note that backslash characters in the content
expression must also be protected. E.g.:

(inform :content "owner(agentl, \"Ian\") "
:language Prolog
-

— Prefix the expression with the appropriate length encoded string notation, thus ensuring that the expression
will be treated as one lexical token irrespective of its structure. E.g.:

(inform :content #22"owner(agentl, "Ian")
:language Prolog
2)

As a result, an ACL parser will generate one lexical token, a string, representing the entire embedded language
expression. Once the message has been parsed, the token representing the content expression can be
interpreted according to its encoding scheme, which will by then be known from the :language parameter.

6.3.5 Use of MIME for additional content expression encoding

Sometimes, even the mechanisms in the previous section are not flexible enough to represent the full range of
types of expression available to an agent. An example may be when an agent wishes to express a concept such
as “the sound you asked for is <a digitised sound>”". Alternatively, it may wish to express some content in a
language or character set encoding different from that used for the description of the content, such as “the
translation of error message <some English text> into Japanese is <some Japanese text>".

The Multipurpose Internet Mail Extensions (MIME) standard was developed to address similar issues in the
context of Internet mail messages [Freed & Borenstein 96). The syntactic form of MIME headers is suited
particularly to the format of mail messages, and is not congruent with the transport syntax defined for FIPA ACL
messages. However, the capabilities provided by MIME, and in particular the now widely used notation for
annotating content types is a capability of great value to some categories of agent. To allow for this, an agent may
optionally be able to process MIME content expression descriptions as wrappers around a given expression,
using an extension of the ACL message syntax.

It is not a mandatory part of this specification that all agents be able to process MIME content descriptions.
However, MIME-capable agents can register this ability with their directory facilitator, and then proceed to use the
format defined in Annex D.

Note that, for the specific task of encoding language specific character sets, the ISO 2022 standard which is the
base level character encoding of the message stream is capable of supporting a full range of international
character encodings.

6.3.6 Primitive and composite communicative acts

This document defines a set of predefined communicative acts, each of which is given a specific meaning in the

http://216.239.57.104/search?q=cache: Ep8p2hgO0IK0J.www fipa.org/specs/fipa00018/0C000... 4/14/04

specification. Pragmatically, each of these communicative acts may be treated equivalently: they have equal
status. However, in terms of definition and the determination of the formal meaning of the communicative acts, we
distinguish two classes: primitive acts and composite acts.

Primitive communicative acts are those whose actions are defined atomically, i.e. they are not defined in terms of
other acts. Composite communicative acts are the converse. Acts are composed by one of the following methods:

— making one communicative act the object of another. For example, "| request you to inform me whether it is
raining" is the composite query-if act.

— using the composition operator *," to sequence actions -

— using the composition operator “|" to denote a non-deterministic choice of actions.

The sequencing operator is written as an infix semicolon. Thus the expression:
a; b '

denotes an action, whose meaning is that of action a followed by action b.

The non-deterministic choice operator is written as an infix vertical bar. Thus the expression:
alb

denotes a macro action, whose meaning is that of either action a, or action b, but not both. The action may occur
in the past, present or future, or not at all.

Note that a macro action must be treated slightly differently than other communicative acts. A macro action can
be planned by an agent, and requested by one agent of another. However, a macro act will not appear as the
outermost (i.e. top-level) message being sent from one agent to another. Macro acts are used in the definition of
new composite communicative acts. For example, see the inform-ifact in §6.5.10.

The definition of composite actions in this way is part of the underlying semantic model! for the ACL, defined using
the semantic description language SL. Action composition as described above is not part of the concrete syntax
for ACL. However, these operators are defined in the concrete syntax for SL used as a content language in Annex
B.

6.4 Message syntax

This section defines the message transport syntax. The syntax is expressed in standard EBNF format. For
completeness, the notation is as follows: '

Grammar rule component Example
Terminal tokens are enclosed in double quotes "

Non terminals are written as capitalised identifiers Expression

Square brackets denote an optional construct [", " OptionalArg]
Vertical bar denotes an alternative Integer | Real

Asterisk denotes zero or more repetitions of the Digit *
preceding expression

Plus denotes one or more repefitions of the Alpha +
preceding expression

Parentheses are used to group expansions. (A|'B) *

Productions are written with the non-terminal name ANonTerminal = "an expansion".
on the lhs, expansion on the rhs, and terminated by

a full stop.

Some slightly different rules apply for the generation of lexical tokens. Lexical tokens use the same notation as
above, except: :

Lexical rule component Example

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J. www fipa.org/specs/fipa00018/0C000... 4/14/04

Square brackets enclose a character set ["a", "b", "c"]
Dash in a character set denotes a range [("a” - "z"]
Tilde denotes the complement of a character setifit [~ "(", ")"]
is the first character
Post-fix question-mark operator denotes that the ["0" - "9"]2 ["0" - "9"]
preceding lexical expression is optional (may appear
zero or one times)
6.4.1 Grammar rules for ACL message syntax
This section defines the grammar for ACL.
ACLCommunicativeAct = Message.
Message = " (" MessageType MessageParameter* ")".
MessageType = "accept-proposal"
| "agree"
| "cancel"
I "C fp "
| "confirm"
| "disconfirm"
| "failure"
| "inform"
| "inform-if"
| "inform-ref"
| "not-understood"
| "propose™"
| "query-if"
| "query-ref"
| "refuse"
| "reject-proposal"”
| "request"
| "request-when"
| "request-whenever"
| "subscribe".
MessageParameter = ":sender" AgentName
| ":receiver" RecipientExpr
| ":content" { Expression | MIMEEnhancedExpression)
| ":reply-with" Expression
| ":reply-by" DateTimeToken
| ":in-reply-to" Expression
| ":envelope" KeyValuePairlist
| ":language" Expression
| ":ontology" Expression
| ":protocol” Word
| ":conversation-id" Expression.
Expression = Word
| String
| Number
|

"(" Expression * ")".

MIMEEnhancedExpression - optional extension. See Annex D.

KeyValuePairList

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000...

" (" KeyValuePair * ")".

4/14/04

KeyValuePair = "(" Word Expression ")".

RecipientExpr AgentName

"(" AgentName + ")".

AgentName = Word
| Word "@" AgentAddress.
AgentAddress = Word "://" InternetAddress ":" Number "/" ACCObj
AccObj = Word.
InternetAddress = DNSName | IPAddress.
IPAddress = Integer "." Integer "." Integer "." Integer.
DNSName = Word.
Lexical rules
Word = [~ "\0x00" - "\Ox1lf",
"("’ ll)"’ ll#"’ "0"—"9", "_ll]
[,_ "\OXOO" _ "\Oxlf",
"(", ")"] *-
String = StringLiteral
| ByteLengthEncodedString.
StringLiteral = W\""»
([~ ll\""] I ll\\\"ll)*
"\ll".
ByteLengthEncodedString = "#" ["0" - "9"]+ "\""

<byte sequence>.

Number = Integer | Float.

DateTimeToken = """ 2
Year Month Day "T"
Hour Minute Second MilliSecond
(TypeDesignator ?).

Year = Digit Digit Digit Digit.
Month = Digit Digit.

Day = Digit Digit.

Hour = Digit Digit.

Minute = Digit Digit.

Second = Digit Digit.

MilliSecond = Digit Digit Digit.
TypeDesignator = AlphaCharacter.

Dlglt = [uon — ngn].

6.4.2 Notes on grammar rules
a) The standard definitions for integers and floating point numbers are assumed.
b) All keywords are case-insensitive.

c) Alength encoded string is a context sensitive lexical token. Its meaning is as follows: the header of the token
is everything from the leading "#" to the separator " inclusive. Between the markers of the header is a
decimal number with at least one digit. This digit then determines that exactly that number of 8-bit bytes are
to be consumed as part of the token, without restriction. It is a lexical error for less than that number of bytes
to be available.

http://216.239.57.104/search?q=cache: Ep8p2hgO0IK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

Note that not all implementations of the agent communication channel (ACC) [see Part One of the FIPA 97
specification] will support the transparent transmission of 8-bit characters. It is the responsibility of the agent
to ensure, by reference to the API provided for the ACC, that a given channel is able to faithfully transmit the
chosen message encoding.

d) A well-formed message will obey the grammar, and in addition, will have at most one of each of the
parameters. It is an error to attempt to send a message which is not well formed. Further rules on well-formed
messages may be stated or implied the operational definitions of the values of parameters as these are
further developed.

e) Strings encoded in accordance with ISO/IEC 2022 may contain characters which are otherwise not permitted
in the definition of Word. These characters are ESC (0x1B), SO (OxOE) and Si (OxOF). This is due to the
complexity that would result from including the full ISO/IEC 2022 grammar in the above EBNF description.
Hence, despite the basic description above, a word may contain any well-formed ISO/IEC 2022 encoded
character, other (representations of) parentheses, spaces, or the “#’ character. Note that parentheses may
legitimately occur as part of a well formed escape sequence; the preceding restriction on characters in a
word refers only to the encoded characters, not the form of the encoding.

f) Time tokens are based on the ISO 8601 format, with extensions for relative time and millisecond durations.
Time expressions may be absolute, or relative to the current time. Relative times are distinguished by the
character “+" appearing as the first character in the construct. Iif no type designator is given, the local
timezone is used. The type designator for UTC is the character "Z". UTC is preferred to prevent timezone
ambiguities. Note that years must be encoded in four digits. As examples, 8:30 am on April 15% 1996 local
time would be encoded as:
19960415T083000000

the same time in UTC would be:
199604 1570830000002

while one hour, 15 minutes and 35 milliseconds from now would be:
+00000000T011500035.

g) The format defined for agent names is taken from part one of the FIPA 97 standard. The option of simply
using a word as the agent name is only valid where that word can be unambiguously resolved to an full agent
name in the format given.

6.5 Catalogue of Communicative Acts

This section defines all of the communicative acts that are part of this specification. Each message is defined by
an informal narrative in this section, and more formally in §8. The narrative and formal definitions are intended to
be equivalent. However, in the case of an ambiguity or inconsistency, the formal definition is the final reference
point.

The following communicative acts and macro acts are standard components of the FIPA agent communication
language. They are listed in alphabetical order. Communicative acts can be directly performed, can be planned
by an agent, and can be requested of one agent by another. Macro acts can be planned and requested, but not
directly performed.

6.5.1 Preliminary notes

The meanings of the communicative acts below frequently make reference to mental attitudes, such as belief,
intention or uncertainty. Whilst the formal semantics makes reference to formal operators which express these
concepts, a given agent implementation is not required to encode them explicitly, or to be founded on any
particular agent model (e.g. BDI). In the following narrative definitions:

— belief means that, at least, the agent has a reasonable basis for stating the truth of a proposition, such as
having the proposition stored in a data structure or expressed implicitly in the construction of the agent
software;

— intention means that the agent wishes some proposition, not currently believed to be true, to become true,
and further that it will act in such a way that the truth of the proposition will be established. Again, this may

not be represented explicitly in the agent];

— uncertain means that the agent is not sure that a proposition is necessarily true, but it is more likely to be
true than false. Believing a proposition and being uncertain of a proposition are mutually exclusive.

http://216.239.57.104/search?q=cache:Ep8p2hgO0IKO0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

For ease of reference, a synopsis formal description of each act is included with the narrative text. The meaning
of the notation used may be found in §8.

6.5.1.1 Category Index

The following table identifies the communicative acts in the catalogue by category. This is provided purely for
ease of reference. Full descriptions of the messages can be found in the appropriate sections.

Table 2 — Categories of communicative acts

Information Requesting Negotiation Action Error handling

Communicative act passing " information performing

accept-proposal ’ v

agree v

cancel v

cfp v

confirm v

disconfirm v

failure v

inform v

inform-if (macro act)

<

inform-ref (macro act) v

not-understood v

propose v

query-if

\

query-ref v

refuse - v

reject-proposal v

request v

request-when

<

request-whenever ' v

subscribe v

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.2 accept-proposal

Summary:

The action of accepting a previously submitted proposal to perform’ an action.

Message content:

A tuple, consisting of an action expression denoting the action to be done, and a
proposition giving the conditions of the agreement.

Description:

Accept-proposal is a general-purpose acceptance of a proposal that was previously
submitted (typically through a propose act). The agent sending the acceptance informs
the receiver that it intends that (at some point in the future) the receiving agent will
perform the action, once the given precondition is, or becomes, true.

The proposition given as part of the acceptance indicates the preconditions that the
agent is attaching to the acceptance. A typical use of this is to finalise the details of.a
deal in some protocol. For example, a previous offer to “hold a meeting anytime on
Tuesday” might be accepted with an additional condition that the time of the meeting is
11.00.

Note for future extension: i may intend that a becomes done without necessarily

Summary Formal
Model

<i, accept-proposal(j, <j, a>, p(e, <j,a>))>=
<i, inform(j, IiDone(<j,a>, pl(e <j,a>)))>

Note: this summary is included here for completeness. For full details, see §8.

Example

Agent i informs j that it accepts, without further preconditions, an offer from j to stream a
given multimedia title to channel 19:

(accept-proposal
:sender i
:receiver j
:in-reply-to bid089
:content
{
(action j (stream-content moviel234 19))
true
)
:language sl)

Agent i informs j that it accepts an offer from j to stream a given multimedia title to
channel 19 when the customer is ready. Agent i will inform | of this fact when
appropriate:

{accept-proposal
:sender i
:receiver j
:in-reply-to bid089
:content
{
(action j (stream-content moviel234 19))
(B j (ready customer78))
)

:language sl)

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.3 agree
Summary: The action of agreeing to perform some action, possibly in the future.
Message content: A tuple, consisting of an agent identifier, an action expression denoting the action to be
done, and a proposition giving the conditions of the agreement.
Description: Agree is a general purpose agreement to a previously submitted request to perform

some action. The agent sending the agreement informs the receiver that it does intend
to perform the action, but not until the given precondition is true.

The proposition given as part of the agree act indicates the qualifiers, if any, that the
agent is attaching to the agreement. This might be used, for example, to inform the
receiver when the agent will execute the action which it is agreeing to perform.

Pragmatic note: the precondition on the action being agreed to can include the
perlocutionary effect of some other CA, such as an inform act. When the recipient of the
agreement (e.g. a contract manager) wants the agreed action to be performed, it should
then bring about the precondition by performing the necessary CA. This mechanism can
be used to ensure that the contractor defers performing the action until the manager is
ready for the action to be done.

Summary Formal | </, agree(j, a,p)> =
Model <i, Inform(j, 1,Done(a, p))>

Note: this summary is included here for completeness. For full details, see §8.

Example Agent i (a job-shop scheduler) requests j (a robot) to deliver a box to a certain location.
J answers that it agrees to the request but it has low priority.
(request
:sender i

:receiver j
:content (action j (deliver box0l17 (location 12 19)}))
:protocol fipa-request
:reply-with order567
)

(agree
:sender j
:receiver 1
:content ((deliver j box01l7 (location 12 19))
(priority order567 low))
:in-reply-to order567
:protocol fipa-request

http://216.239.57.104/search?q=cache:Ep8p2hgOIKO0J:www. fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.4 cancel

Summary: The action of cancelling some previously requesfed action which has temporal extent
(i.e. is not instantaneous).

Message content: An action expression denoting the action to be cancelled.

Description: Cancel allows an agent to stop another agent from continuing to perform (or expecting

to perform) an action which was previously requested. Note that the action that is the
object of the act of cancellation should be believed by the sender to be ongoing or to be
planned but not yet executed.

Attempting to cancel an action that has already been performed will result in a refuse
message being sent back to the originator of the request.

Summary Formal | <j, cancel(j a)>=
Model <i, disconfirm(j, I, Done(a)>

Note: this summary is included here for completeness. For full details, see §8.

Example Agent jO asks i to cancel a previous request-whenever by quoting the action:

(cancel
:sender j0
:receiver i
:content (request-whenever :sender j ..)

)

Agent j1 asks i to cancel an action by cross-referencing the previous conversation in
which the request was made:

(cancel
:sender jl
rreceiver i
:conversation-id cnv0087

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0CQ00... 4/14/04

655 cfp
Summary: The action of calling for proposals to perform a given action.
Message content: A tuple containing an action expression denoting the action to be done and a

proposition denoting the preconditions on the action.

Description:: CFP is a general-purpose action to initiate a negotiation process by making a call for
proposals to perform the given action. The actual protocol under which the negotiation
process is established is known either by prior agreement, or is explicitly stated in
the :protocol parameter of the message.

In normal usage, the agent responding to a cfp should answer with a proposition giving
its conditions on the performance of the action. The responder's conditions should be
compatible with the conditions originally contained in the cfp. For example, the cfp might
seek proposals for a journey from Frankfurt to Munich, with a condition that the mode of
travel is by train. A compatible proposal in reply would be for the 10.45 express train. An
incompatible proposal would be to travel by 'plane.

Note that cfp can also be used to simply check the availability of an agent to perform
some action. '

Summary Formal | <j cfp(j, <j, a>, p(e, <j,a>))>=
Modet <i, query-ref(j, x
‘ (Ii Ve Feasible(e, Done(e ; <i, inform(j, |, <j, a>) >) A
((x=p'(e, <j,a>)) AxAp(e,<j a>)
=
Ij Done(<j, a>) A Feasible(<j, a>))))) >

Note: this summary is included here for completeness. For full delails, see §8.

Example Agent j asks i to submit its proposal to sell 50 boxes of plums:

(cfp
:sender j
:receiver 1
:content ((action i (sell plum 50)) true)
:ontology fruit-market

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.6 confirm

Summary: The sender informs the receiver that a given proposition is true, where the receiver is
known to be uncertain about the proposition.

Message content: A proposition

Description: The sending agent:

e Dbelieves that some proposition is true

e intends that the receiving agent also comes to believe that the proposition is
true

e believes that the receiver is uncertain of the truth of the proposition
The first two properties defined above are straightforward: the sending agent is sincere
Bl and has (somehow) generated the intention that the receiver should know the
proposition (perhaps it has been asked). The last pre-condition determines when the
agent should use confirm vs. inform vs. disconfirm: confirm is used precisely when the

other agent is already known to be uncertain about the proposition (rather than
uncertain about the negation of the proposition).

From the receiver's viewpoint, receiving a confirn message entitles it to believe that:
¢ the sender believes the proposition that is the content of the message
¢ the sender wishes the receiver to believe that proposition also.

Whether or not the receiver does, indeed, change its mental attitude to one of belief in
the proposition will be a function of the receiver's trust in the sincerity and reliability of

the sender.
Summary Formal | <j, confirm(j, ¢)>
Model FP: Bpa BUD

RE: Bjtb

Note: this summary is included here for completeness. For full details, see §8.
Examples Agent i confirms to agent j that it is, in fact, true that it is snowing today.

(confirm

:sender i

:receiver j
:content "weather(today, snowing)"
:language Prologq)

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J.www fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.7 disconfirm

Summary: The sender informs the receiver that a given proposition is false, where the receiver is
known to believe, or believe it likely that, the proposition is true.

Message content: A proposition

Description: The disconfirm act is used when the agent wishes to alter the known mental attitude of

another agent.
The sending agent:
¢ believes that some proposition is false

¢ intends that the receiving agent also comes to believe that the proposition is
false

¢ Dbelieves that the receiver either believes the proposition, or is uncertain of the
proposition.

The first two properties defined above are straightforward: the sending agent is sincere
(note 5), and has (somehow) generated the intention that the receiver should know the
proposition (perhaps it has been asked). The last pre-condition determines when the
agent should use confirm, inform or disconfirm: disconfirm is used precisely when the
other agent is already known to believe the proposition or to be uncertain about it.

From the receiver's viewpoint, receiving a disconfirm message entitles it to believe that:

+ the sender believes that the proposition that is the content of the message is
false;

¢ the sender wishes the receiver to believe the negated proposition also.

Whether or not the receiver does, indeed, change its mental attitude to one of disbelief
in the proposition will be a function of the receiver's trust in the sincerity and reliability of

the sender.
Summary__Formal | <j, disconfirm(j, ¢)>
Model FP: B-oAB(Ugdv Bo)
RE: Bjﬁd)
Note: this summary is included here for completeness. For full details, see §8.
Examples Agent i, believing that agent j thinks that a shark is a mammal, attempts to change j's
belief:
(disconfirm
:sender i

:receiver j
:content (mammal shark))

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa. org/specs/fipa00018/0C000... 4/14/04

6.5.8 failure

Summary: The action of telling another agent that an action was attempted but the attempt failed.

Message content: A tuple, consisting of an action expression and a proposition giving the reason for the
failure.

Description: The failure act is an abbreviation for informing that an act was considered feasible by

the sender, but was not completed for some given reason.
The agent receiving a failure act is entitled to believe that:
¢ the action has not been done

o the action is (or, at the time the agent attempted to perform the action, was)
feasible

The (causal) reason for the refusal is represented by the proposition, which is the third
term of the tuple. It may be the constant true. There is no guarantee that the reason is
represented in a way that the receiving agent will understand: it could be a textual error
message. Often it is the case that there is little either agent can do to further the attempt
to perform the action.

Summary Formal | <j, failure(j, a, p)> =
Model <i, inform(j, (3e) Single(e) A e # a A Done(e, Feasible(a) A |, Done(a)) A

p A (—=Done(a) A-l; Done(a)))>

Note: this summary is included here for completeness. For full details, see §8.

Example Agent j informs i that it has failed to open a file:
(failure
:sender j
:receiver i
:content

(
(action j "open(\"foo.txt\”)")
(error-message "No such file: foo.txt")
)

:language sl)

http://216.239.57.104/search?q=cache: Ep8p2hg0IKO0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.9 inform

Summag: The sender informs the receiver that a given proposition is true.
Message content: | A proposition
Description: The sending agent:

+ holds that some proposition is true;

* intends that the receiving agent also comes to believe that the proposition is
true;

¢ does not already believe that the receiver has any knowledge of the truth of the
proposition.

The first two properties defined above are straightforward: the sending agent is sincere,
and has (somehow) generated the intention that the receiver should know the
proposition (perhaps it has been asked). The last property is concerned with the
semantic soundness of the act. If an agent knows already that some state of the world
holds (that the receiver knows proposition p), it cannot rationally adopt an intention to
bring about that state of the world (i.e. that the receiver comes to know p as a result of
the inform act). Note that the property is not as strong as it perhaps appears. The
sender is not required to establish whether the receiver knows p. It is only the case that,
in the case that the sender already happens to know about the state of the receiver's
beliefs, it should not adopt an intention to tell the receiver something it already knows.

From the receiver's viewpoint, receiving an inform message entitles it to believe that:
e the sender believes the proposition that is the content of the message
o the sender wishes the receiver to believe that proposition also.

Whether or not the receiver does, indeed, adopt belief in the proposition will be a
function of the receiver's trust in the sincerity and reliability of the sender.

Summary Formal | <j inform(j, ¢)>

Modet FP: Bipr— B(Bifjd)v Uifjcb)
RE: Bi¢
Note: this summary is included here for completeness. For full details, see §8.
Examples ‘ Agent i informs agent j that (it is true that) it is raining today:
(inform
:sender i

:receiver j
:content "weather(today, raining)"
:language Prolog)

http://216.239.57.104/search?q=cache:Ep8p2hgO0IKO0J:-www.fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.10 inform-if (macro act)

Summary: A macro action for the agent of the action to inform the recipient whether or not a
proposition is true.

Message content: A proposition.

Description: The inform-if macro act is an abbreviation for informing whether or not a given

proposition is believed. The agent which enacts an inform-if macro-act will actually
perform a standard inform act. The content of the inform act will depend on the
informing agent's beliefs. To inform-if on some closed proposition ¢:

+ if the agent believes the proposition, it will inform the other agent that ¢
o ifit believes the negation of the proposition, it informs that ¢ is false (i.e. —¢)

Under other circumstances, it may not be possible for the agent to perform this plan. For
example, if it has no knowledge of ¢, or will not permit the other party to know (that it
believes) ¢, it will send a refuse message. '

Summary Formal | <j, inform-if(j, p)> =
Model <i, inform(j, p }> | <i, inform(j, —p)>

Note: this summary is included here for completeness. For full details, see §8.

Examples Agent i requests j to inform it whether Lannion is in Normandy:
(request
:sender i
:receiver j
:content

(inform-if :sender j
:receiver i
:content "in(lannion, normandy)"
:language Prologqg)
:language sl)

Agent j replies that it is not:

(inform :sender j
:receiver i
:content "\+ in(lannion, normandy)"
:language Prolog)

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.11 inform-ref (macro act)

Summary: A macro action for sender to inform the receiver the object which corresponds to a
definite descriptor (e.g. a name).

Message content: An object description.

Description: The inform-ref macro action allows the sender to inform the receiver some object that

the sender believes corresponds to a definite descriptor, such-as a name or other
identifying description.

Inform-ref is a macro action, since it corresponds to a (possibly infinite) disjunction of
inform acts, each of which informs the receiver that “the object corresponding to name
is X’ for some given x. For example, an agent can plan an inform-ref of the current time
to agent j, and then perform the act “inform j that the time is 10.45".

The agent performing the act should believe that the object corresponding to the definite
descriptor is the one that is given, and should not believe that the recipient of the act
already knows this. The agent may elect to send a refuse message if it is unable to
establish the preconditions of the act. Alternatively, it may choose to alter another
agents known mental atlitudes with respect to the given description by confirm-ref or
disconfirm-ref.

Summary Formal | <j, inform-ref(j, xx 8(x))> =
Model <i, inform(j, x 8(x) = r,)> | ... | <i, inform(j, 1x d(x)=r.)>

Note: this summary is included here for completeness. For full details, see §8.

Example Agent i requests j to tell it the current Prime Minister of the United Kingdom:

(request
:sender i
:receiver j
ccontent
(inform-ref
:sender j
:receiver i
:content (iota ?x (UKPrimeMinister 7x))
:ontology world-politics
:language sl
)
:reply-with query0
:language sl)

Agent j replies:

(inform
:sender j
:receiver i
:content (= (iota ?x (UKPrimeMinister 7x))
"Tony Blair")
:ontology world-politics
:in-reply-to queryO)

Note that a standard abbreviation for the request of inform-ref used in this example is
the act query-ref.

http://216.239.57.104/search?q=cache: Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.12 not-understood

Summary: The sender of the act (e.g. i) informs the receiver (e.g. j) that it perceived that j
performed some action, but that i did not understand what j just did.- A particular
common case is that i tells j that i did not understand the message that j has just sent to
i

Message content: A tuple consisting of an action or event (e.g. a communicative act) and an explanatory
reason.

Description: The sender received a communicative act which it did not understand. There may be
several reasons for this: the agent may not have been designed to process a certain act .
or class of acts, or it may have been expecting a different message. For example, it may
have been strictly following a pre-defined protocol, in which the possible message’
sequences are predetermined. The not-understood message indicates to that the
sender of the original (i.e. misunderstood) action that nothing has been done as a result
of the message.

This act may also be used in the general case for i to inform j that it has not understood
j's action.

The second term of the content tuple is a proposition representing the reason for the
failure to understand. There is no guarantee that the reason is represented in a way that
the receiving agent will understand: it could be a textual error message. However, a co-
operative agent will attempt to explain the misunderstanding constructively

Summary _Formal | <j, not-understood(j, a })> =
Model FP: to be completed
RE: to be completed

Note: this summary is included here for completeness. For full details, see §8.

Examples Agent i did not understand an query-if message because it did not recognise the
ontology:

(not-understood
:sender i
:receiver j
:content ((query-if :sender j :receiver i ..)
(unknown (ontology www)))
:language sl)

http://216.239.57.104/search?q=cache:Ep8p2hg0IK 0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.13 propose

Summary: The action of submitting a proposal to perform a certain action, given certain
preconditions. : o

Message content: A tuple containing an action description, representing the action that the sender is
proposing to perform, and a proposition representing the preconditions on the
performance of the action.

Description: Propose is a general-purpose action to make a proposal or respond to an existing
proposal during a negotiation process by proposing to perform a given action subject to
certain conditions being true. The actual protocol under which the negotiation process is
being conducted is known either by prior agreement, or is explicitly stated in
‘the :protocol parameter of the message.

The proposer (the sender of the propose) informs the receiver that the proposer will
adopt the intention to perform the action once the given precondition is met, and the
receiver notifies the proposer of the receiver's intention that the proposer performs the
action.

A typical use of the condition attached to the proposal is to specify the price of a bid in
an auctioning or negotiation protocol.

Summary Formal | </, propose(j, <i, a>, p> =
Model <i, inform(j, I;Done(a, p) =
I;Done(a, p))>

Note: this summary is included here for completeness. For full details, see §8.

Example Agent j informs i that it will sell 50 boxes of plums for $200:
(propose ’
:sender j

:receiver i

:content ((action j (sell plum 50)) (cost 200))
:ontology fruit-market

:in-reply-to proposal2

:language sl

http://216.239.57.104/search?q=cache:Ep8p2hgO0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.14 query-if

Summary: The action of asking another agent whether or not a given proposition is true.

Message content: A proposition.

Description: Query-if is the act of asking another agent whether (it believes that) a given proposition
is true. The sending agent is requesting the receiver to inform it of the truth of the
proposition.

The agent performing the query-if act:
¢ has no knowledge of the truth value of the proposition

s believes that the other agent does know the truth of the proposition.

Summary Formal | <j, query-if(j, ¢) =
Model <i, request(j, <j, inform-if(i, ¢ }>)>

Note: this summary is included here for completeness. For full details, see §8.

Example Agent i asks agent j if j is registered with domain server d1:

(query-if
:sender i
:receiver j
:content
(registered (server dl) (agent j))
:reply-with r09
)

Agent j replies that it is not:

(inform
:sender j
:receiver i
:content (not (registered (server dl) (agent j)))
:in-reply-to r09

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0OC000... 4/14/04

6.5.15 query-ref

Summary: The action of asking another agent for the object referred to by an expression.

Message content: A definite descriptor

Description: Query-ref is the act of asking another agent to inform the requestor of the object
identified by a definite descriptor. The sending agent is requesting the receiver to
perform an inform act, containing the object that corresponds to the definite descriptor.

The agent performing the query-refact:
e does not know which object corresponds to the descriptor

o believes that the other agent does know which object corresponds to the
descriptor.

Summary Formal | <j, query-ref(j, x 8(x))=
Model <i, request(j, <j, inform-ref(i, 1x 5(x))>)>

Note: this summary is included here for completeness. For full details, see §8.

Example Agent i asks agent j for its available services:
(query-ref
:sender 1i
:receiver j
:content

(iota ?x (available-services j ?x))

)
j replies that it can reserve trains, planes and automobiles:

(inform

:sender j

:receiver i

:content

(= (iota 7?x (available-services j ?x))
((reserve-ticket train)

(reserve-ticket plane)
(reserve automobile))

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www.fipa.org/specs/fipa00018/0CO000... 4/14/04

6.5.16 refuse

Summary: The action of refusing to perform a given action, and explaining the reason for the
refusal.

Message content: A tuple, consisting of an action expression and a proposition giving the reason for the
refusal.

Description: The refuse act is an abbreviation for denying (strictly speaking, disconfirming) that an
act is possible for the agent to perform, and stating the reason why that is so.

The refuse act is performed when the agent cannot meet all of the preconditions for the
action to be carried out, both implicit and explicit. For example, the agent may not know
something it is being asked for, or another agent requested an action for which it has
insufficient privilege.

The agent receiving a refuse act is entitled to believe that:
e the action has notbeen done
e the action is not feasible (from the point of view of the sender of the refusal)

e the (causal) reason for the refusal is represented by the a proposition which is
the third term of the tuple, (which may be the constant true). There is no
guarantee that the reason is represented in a way that the receiving agent will
understand: it could be a textual error message. However, a co-operative agent
will attempt to explain the refusal constructively.

Summary _Formal | «j, refuse(j, a, ¢)>=
Model <i, disconfirm(j, Feasible(a))> ;
<i, inform(j, ¢ (¢=> (—~Done(a) A~ Done(a))))>

Note: this summary is included here for completeness. For full details, see §8.

Example Agent j refuses to i reserve a ticket for i, since i there are insufficient funds in i's account:
(refuse
:sender Jj
:receiver i
:content

(
(action j (reserve-ticket LHR, MUC, 27-sept-97))
(insufficient-funds acl12345)

)

:language sl)

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www.fipa.org/specs/fipa00018/0CO000... 4/14/04

6.5.17 reject-proposal

Summary: The action of rejecting a proposal to perform some action during a negotiation.

Message content: A tuple consisting of an action description and a proposition which formed the original
proposal being rejected, and a further proposition which denotes the reason for the
rejection.

Description: Reject-proposal is a general-purpose rejection to a previously submitted proposal. The
agent sending the rejection informs the receiver that it has no intention that the recipient
performs the given action under the given preconditions.

The additional proposition represents a reason that the proposal was rejected. Since it
is in general hard to relate cause to effect, the formal model below only notes that the
reason proposition was believed true by the sender at the time of the rejection.
Syntactically the reason on the lhs should be treated as a causal explanation for the
rejection, even though this is not established by the formal semantics.

Summary _Formal | <j, reject-proposal(j, <j, a>, p(e, <j,a>), ¢)>=
Model <i, inform(j, =, (Done(< j, a>) Ap(e, <j, a>)) A)>

Note: this summary is included here for completeness. For full details, see §8.

Example Agent i informs j that it rejects an offer from j to sell

(reject-proposal
:sender i
:receiver j
:content ((action j (sell plum 50)) (price-too-high 50))
:in-reply-to proposall3

http://216.239.57.104/search?q=cache:Ep8p2hg0IK 0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.18 request

Summary: The sender requests the receiver to perform some action.

One important class of uses of the request act is to request the receiver to perform
another communicative act.

Message content. An action description.

Description: The sender is requesting the receiver to perform some action. The content .of the
message is a description of the action to be performed, in some language the receiver
understands. The action can be any action the receiver is capable of performing: pick
up a box, book a plane flight, change a password etc.

An im;;onant use of the request act is to build composite conversations between agents,
where the actions that are the object of the request act are themselves communicative
acts such as inform.

Summary Formal | </, request(j, a)>

Model FP: FP(a) [N] A B; Agent(j, a) A~—B; |; Done(a)
RE: Done(a)
Note: this summary is included here for completeness. For full details, see §8.
_Examples Agent i requests j to open a file:
(request
:sender i

:receiver j
:content "open \"db.txt\" for input"”
:language vb)

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.19 request-when

Summary: The sender wants the receiver to perform some action when some given proposition
becomes true.

Message content: A tuple of an action description and a proposition.

Description: Request-when allows an agent to inform another agent that a certain action should be
performed as soon as a given precondition, expressed as a proposition, becomes true.

The agent receiving a request-when should either refuse to take on the commitment, or
should arrange to ensure that the action will be performed when the condition becomes
true. This commitment will persist until such time as it is discharged by the condition
becoming true, the requesting agent cancels the request-when, or the agent decides
that it can no longer honour the commitment, in which case it should send a refuse
message to the originator.

No specific commitment is implied by the specification as to how frequently the
proposition is re-evaluated, nor what the lag will be between the proposition becoming
true and the action being enacted. Agents which require such specific commitments
should negotiate their own agreements prior to submitting the request-when act.

Summary Formal | <j request-when(j, <j, a>, p)>=
Model <i, inform(j, I; (3e) Enables(e, ij) = After(e, <j,a>))>

Note: this summary is included here for completeness. For full details, see §8.

Examples Agent i tells agent j to notify it as soon as an alarm occurs.

(request-when
:sender i
:receiver j
:content (
(inform :sender j :receiver i
:content "something alarming!")
(Done(alarm))

)

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0CO000... 4/14/04

6.5.20 request-whenever

Summary: The sender wants the receiver to perform some action as soon as some proposition
becomes true and thereafter each time the proposition becomes true again.

Message content: A tuple of an action description and a proposition.

Description: Request-whenever allows an agent to inform another agent that a certain action should

be performed as soon as a given precondition, expressed as a proposition, becomes
true, and that, furthermore, if the proposition should subsequently become false, the
action will be repeated as soon as it once more becomes true.

Request-whenever represents a persistent commitment to re-evaluate the given
proposition and take action when its value changes. The originating agent may
subsequently remove this commitment by performing the cancel action.

No specific commitment is implied by the specification as to how frequently the
proposition is re-evaluated, nor what the lag will be between the proposition becoming
true and the action being enacted. Agents who require such specific commitments
should negotiate their own agreements prior to submitting the request-when act.

Summary _Formal | <j, request-whenever(j, <j, a>, p)> =
Model <i, inform(j, |; Done(a, (3e) Enabled(e, Bj P)))>

Note: this summary is included here for completeness. For full details, see §8.

Examples Agent i tells agent j to notify it whenever the price of widgets rises from less than 50 to
more than 50. .

(request-whenever
:sender i
:receiver j
:content ((inform :sender j :receiver i
:content (price widget))
(> (price widget) 50))

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

6.5.21 subscribe

Summary: The act of requesting a persistent intention to notify the sender of the value of a
reference, and to notify again whenever the object identified by the reference changes. -

Message content: A definite descriptor

Description: The subscribe act is a persistent version of query-ref, such that the agent receiving the
subscribe will inform the sender of the value of the reference, and will continue to send:
further informs if the object denoted by the definite description changes.

A subscription set up by a subscribe act is terminated by a cancel act.

Summary Formal | Version 1 (Philippe):

Model . . .
<i, subscribe(j, x 3(x))> =

<i, request-whenever(j, <j, inform-ref(i, x 8(x)>,
(3y) Bj ((1x 8(x)) =y))>
Version 2 (old):

<i, subscribe(j, 1x 8(x))> =
<i, inform(j, I, (Ve) (Ve') (Vy)
Feasible(e; €',
Done(€', -Bj (1x 3(x))=y) n
Bj (1x 3(x))=y) =
Feasible(e ; €', (Vel) Feasible(el) =
@3 e2) (3 e3)
(e1 = (e2; «j, inform(i, (1x 3(x)) =y)>; e3))))>

We need a final decision on this — ed.

Note: this summary is included here for completeness. For full details, see §8.

Examples Agent i wishes to be updated on the exchange rate of Francs to Dollars, and makes a
subscription agreement with j (an exchange rate server):

(subscribe
:sender i
:receiver j:
:content (iota ?x (= ?x (xch-rate FFr USD)))

http://216.239.57.104/search?q=cache: Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

7 Interaction Protocols

Ongoing conversations between agents often fall into typical patterns. In such cases, certain message sequences
are expected, and, at any point in the conversation, other messages are expected to follow. These typical
patterns of message exchange are called protocols. A designer of agent systems has the choice to make the
agents sufficiently aware of the meanings of the messages, and the goals, beliefs and other mental attitudes the
agent possesses, that the agent’s planning process causes such protocols to arise spontaneously from the
agents’ choices. This, however, places a heavy burden of capability and complexity on the agent implementation,
though it is not an uncommon choice in the agent community at large. An alternative, and very pragmatic, view is
to pre-specify the protocols, so that a simpler agent implementation can nevertheless engage in meaningful
conversation with other agents, simply by carefully following the known protocol.

This section of the specification details a number of such protocols, in order to facilitate the effective inter-
operation of simple and complex agents. No claim is made that this is an exhaustive list of useful protocols, nor
that they are necessary for any given application. The protocols are given pre-defined names: the requirement for
adhering to the specification is:

Requirement 8:

An ACL compliant agent need not implement any of the standard protocols, nor is it restricted from using
other protocol names. However, if one of the standard protocol names is used, the agent must behave
consistently with the protocol specification given here.

Note that, by their nature, agents can engage in multiple dialogues, perhaps with different agents, simultaneously.
. The term conversation is used to denote any particular instance of such a dialogue. Thus, the agent may be
concurrently engaged in multiple conversations, with different agents, within different protocols. The remarks in
this section which refer to the receipt of messages under the control of a given protocol refer only to a particular
conversation.

7.1 Specifying when a protocol is in operation

Notionally, two agents intending to use a protocol should first negotiate whether to use a protocol, and, if so,.
which one. However, providing the mechanism to do this would negate a key purpose of protocols, which is to
simplify the agent implementation. The following convention is therefore adopted: placing the name of the protocol

that is being used in the :protocol parameter of a message is equivalent to (and slightly more efficient than)
prepending with an inform that i intends that the protocol will be done (i.e., formally, |; Done(protocol-name)).

Once the protocol is finished, which may occur when one of the final states of the protocol is reached, or when the
name of the protocol is dropped from the :protocol parameter of the message, this implicit intention has been
satisfied.

If the agent receiving a message in the context of a protocol which it cannot, or does not wish to, support, it
should send back a refuse message explaining this.

Example:

(request :sender i
:receiver j
:content some-act
:protocol fipa-request

7.2 Protocol Description Notation

The following notation is used to describe the standard interaction protocols in a convenient manner:
— Boxes with double edges represent communicative actions.
— White boxes represent actions performed by initiator.

— Shaded boxes are performed by the other participant(s) in the protocol.

http://216.239.57.104/search?q=cache:Ep8p2hg0IK 0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

— ltalicised text with no box represents a comment.

CA of message lype

and message content
as performed by initiator

A comment

Figure 2 — Example of graphical description of protocols

The above notation is meant solely to represent the protocol as it might be seen by an outside observer. In
particular, only those actions should be depicted which are explicit objects of conversation. Actions which are
internal to an agent in order to execute the protocol are not represented as this may unduly restrict an agent
implementation (e.g. it is of no concern how an agent arrives at a proposal).

7.3 Defined protocols

7.3.1 Failure to understand a response during a protocol

Whilst not, strictly speaking, a protocol, by convention an agent which is expecting a certain set of responses in a
protocol, and which receives another message not in that set, should respond with a not-understood message.

To guard against the possibility of infinite message loops, it is not permissible to respond to a not-understood
message with another not-understood message!

7.3.2 FIPA-request Protocol

The FIPA-request protocol simply allows one agent to request another to perform some action, and the receiving
agent to perform the action or reply, in some way, that it cannot.

request
action

Figure 3 — FIPA-Request Protocol

7.3.3 FIPA-query Protocol

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:-www fipa.org/specs/fipa00018/0C000... 4/14/04

In the FIPA-query protocol, the receiving agent is requested to perform some kind of inform action. Requesting to
inform is a query, and there are two query-acts: query-if and query-ref. Either act may be used to initiate this
protocol. If the protocol is initiated by a query-if act, it the responder will plan to return the answer to the query
with a normal inform act. If initiated by query-ref, it will instead be an inform-ref that is planned. Note that, since
inform-ref is a macro act, it will in fact be an inform act that is in fact carried out by the responder.

query or
query-ref

Figure 4 — FIPA-Query Protocol

7.3.4 FIPA-request-when Protocol

The FIPA-request-when protocol is simply an expression of the full intended meaning of the request-when action.
The requesting agent uses the request-when action to seek from the requested agent that it performs some action
in the future once a given precondition becomes true. If the requested agent understands the request and does
not refuse, it will wait until the precondition occurs then perform the action, after which it will notify the requester
that the action has been performed. Note that this protocol is somewhat redundant in the case that the action
requested involves notifying the requesting agent anyway. If it subsequently becomes impossible for the
requested agent to perform the action, it will send a refuse request to the original requestor.

request-when
action

precondition

[I

can proceed? camot proceed

| precondition
i is true

Figure 5 — FIPA-request-when protocol

7.3.5 FIPA-contract-net Protocol

This section presents a version of the widely used Contract Net Protocol, originally developed by Smith and Davis
[Smith & Davis 80]. FIPA-Contract-Net is a minor modification of the original contract net protocol in that it adds

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

rejection and confirmation communicative acts. In the contract net protocol, one agent takes the role of manager.
The manager wishes to have some task performed by one or more other agents, and further wishes to optimise a
function that characterises the task. This characteristic is commonly expressed as the price, in some domain
specific way, but could also be soonest time to completion, fair distribution of tasks, etc.

The manager solicits proposals from other agents by issuing a call for proposals, which specifies the task and any
conditions the manager is placing upon the execution of the task. Agents receiving the call for proposals are
viewed as potential contractors, and are able to generate proposals to perform the task as propose acts. The
contractor's proposal includes the preconditions that the contractor is setting out for the task, which may be-the
price, time when the task will be done, etc. Alternatively, the contractor may refuse to propose. Once the manager
receives back replies from all of the contractors, it evaluates the proposals and makes its choice of which agents
will perform the task. One, several, or no agents may be chosen. The agents of the selected proposal(s) will be
sent an acceptance message, the others will receive a notice of rejection. The proposals are assumed to be
binding on the contractor, so that once the manager accepts the proposal the contractor acquires a commitment
to perform the task. Once the contractor has completed the task, it sends a completion message to the manager.

Note that the protocol requires the manager to know when it has received all replies. In the case that a contractor
fails to reply with either a propose or a refuse, the manager may potentially be left waiting indefinitely. To guard
against this, the cfp includes a deadline by which replies should be received by the manager. Proposals received
after the deadline are automaticaily rejected, with the given reason that the proposal was late.

cfp
adion
preconditionst

|

Deadihine forproposals

[]
reject-proposal accept -proposal
reason proposd

the manager cancels the :
| contractdue to @ change |
! of situation

Figure 6 — FIPA-Contract-Net

7.3.6 - FIPA-lterated-Contract-Net Protocol

The iterated contract net protocol is an extension of the basic contract net as described above. It differs from the
basic version of the contract net by allowing multi-round iterative bidding. As above, the manager issues the initial
call for proposals with the cfp act. The contractors then answer with their bids as propose acts. The manager may
then accept one or more of the bids, rejecting the others, or may iterate the process by issuing a revised cfp. The
intent is that the manager seeks to get better bids from the contractors by modifying the call and requesting new
(equivalently, revised) bids. The process terminates when the manager refuses all proposals and does not issue a
new call, accepts one or more of the bids, or the contractors all refuse to bid.

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

cfp ||

action 'I

preconditionst

I

reject- proposal
reason

accept-proposal reject-proposal
preconditions3 reason

Figure 7 — FIPA-iterated-contract-net protocol

7.3.7 FIPA-Auction-English Protocol

In the English Auction, the auctioneer seeks to find the market price of a good by initially proposing a price below
that of the supposed market value, and then gradually raising the price. Each time the price is announced, the
auctioneer waits to see if any buyers will signal their wiliingness to pay the proposed price. As soon as one buyer
indicates that it will accept the price, the auctioneer issues a new call for bids with an incremented price. The
auction continues until no buyers are prepared to pay the proposed price, at which point the auction ends. If the
last price that was accepted by a buyer exceeds the auctioneer's (privately known) reservation price, the good is
sold to that buyer for the agreed price. If the last accepted price is less than the reservation price, the good is not
sold.

In the following protocol diagram, the auctioneer's calls, expressed as the general cfp act, are multicast to all
participants in the auction. For simplicity, only. one instance of the message is portrayed. Note also that in a
physical auction, the presence of the auction participants in one room effectively means that each acceptance of
a bid is simultaneously broadcast to all participants, not just the auctioneer. This may not be true in an agent
marketplace, in which case it is possible for more than one agent to attempt to bid for the suggested price. Even
though the auction will continue for as long as there is at least one bidder, the agents will need to know whether
their bid (represented by the propose act) has been accepted. Hence the appearance in the protocol of accept-
proposal and reject-proposal messages, despite this being implicit in the English Auction process that is being
modelled.

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J.-www.fipa.org/specs/fipa00018/0C000... 4/14/04

inform
sart of auction

CFP
(<action>
<precondition>

¥

accept-offer reject-offer

No bids .
announced

request inform

successful buyer to end of auction

perform action

Figure 8 — FIPA-auction-english protocol

7.3.8 FIPA-Auction-Dutch Protocol

In what is commonly called the Dutch Auction, the auctioneer attempts to find the market price for a good by
starting bidding at a price much higher than the expected market value, then progressively reducing the price until
one of the buyers accepts the price. The rate of reduction of the price is up to the auctioneer, and the auctioneer
usually has a reserve price below which it will not go. If the auction reduces the price to the reserve price with no
buyers, the auction terminates.

The term "Dutch Auction” derives from the flower markets in Holland, where this is the dominant means of
determining the market value of quantities of (typically) cut flowers. In modelling the actual Dutch flower auction
(and indeed in some other markets), some additional complexities occur. First, the good may be split: for example
the auctioneer may be selling five boxes of tulips at price x, and a buyer may step in and purchase only three of
the boxes. The auction then continues, with a price at the next increment below x, until the rest of the good is sold
or the reserve price met. Such partial sales of goods are only present in some markets; in others the purchaser

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:-www fipa.org/specs/fipa00018/0C000... 4/14/04

must bid to buy the entire good. Secondly, the flower market mechanism is set up to ensure that there is no
contention amongst buyers, by preventing any other bids once a single bid has been made for a good. Offers and
bids are binding, so there is no protocol for accepting or rejecting a bid. In the agent case, it is not possible to
assume, and too restrictive to require, that such conditions apply. Thus it is quite possible that two or more bids
are received by the auctioneer for the same good. The protocol below thus allows for a bid to be rejected. This is
intended only to be used in the case of multiple, competing, simultaneous bids. It is outside the scope of this
specification to pre-specify any particular mechanism for resolving this conflict. In the general case, the agents
should make no assumptions beyond "first come, first served". In any given domain, other rules may apply.

inform
start of auction

CFP
(<action>
<precondition>

No bids Y Y
announced '_ accept-offer reject-offer

inform

end of auction

Figure 9 — FIPA-auction-dutch protocol

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:-www fipa.org/specs/fipa00018/OC000... 4/14/04

8 Formal basis of ACL semantics

This section provides a formal definition of the communication language and its semantics. The intention here is
to provide a clear, unambiguous reference point for the standardised meaning of the inter-agent communicative
acts expressed through messages and protocols. This section of the specification is normative, in that agents
which claim to conform to the FIPA specification ACL must behave in accordance with the definitions herein.
However, this section may be treated as informative in the sense that no new information is introduced here that
is not already expressed elsewhere in this document. The non mathematically-inclined reader may safely omit this
section without sacrificing a full understanding of the specification.

Note also that conformance testing, that is, demonstrating in an unambiguous way that a given agent
implementation is correct with respect to this formal model, is not a problem which has been solved in this FIPA
specification. Conformance testing will be the subject of further work by FIPA.

8.1 Introduction to formal model
This section presents, in an informal way, the model of communicative acts that underlies the semantics of the

message language. This model is presented only in order to ground the stated meanings of communicative acts
and protocols. It is not a proposed architecture or a structural model of the agent design. ’

Other than the special case of agents that operate singly and interact only with human users or other software
interfaces, agents must communicate with each other to perform the tasks for which they are responsible.

Consider the basic case shown below:

| Speech act

Message M

Figdre 10 — Message passing between two agents

Suppose that, in abstract terms, Agent i has amongst its mental attitudes the following: some goal or objective G,
and some intention I. Deciding to satisfy G, the agent adopts a specific intention, I. Note that neither of these
statements entail a commitment on the design of 1: G and I could equivalently be encoded as explicit terms in the
mental structures of a BDI agent, or implicitly in the call stack and programming assumptions of a simple Java or
database agent.

Assuming that i cannot carry out the intention by itself, the question then becomes which message or set of
messages should be sent to another agent (J in the figure) to assist or cause intention I to be satisfied? If agent
i is behaving in some reasonable sense rationally, it will not send out a message whose effect will not satisfy the
intention and hence achieve the goal. For example, if Harry wishes to have a barbecue (G = "have a
barbecue"), and thus derives a goal to find out if the weather will be suitable (' = "know if it is
raining today"), and thus intends to find out the weather (I = “find out if it is raining"), he will
be ill-advised to ask Sally "have you bought Acme stock today?”. From Harry's perspective, whatever Sally says,
it will not help him to determine whether it is raining today.

Continuing the example, if Harry, acting more rationally, asks Sally “can you tell me if it is raining today?”, he has
acted in a way he hopes will satisfy his intention and meet his goal (assuming that Harry thinks that Sally will
know the answer). Harry can reason that the effect of asking Sally is that Sally would tell him, hence making the

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0CO000... 4/14/04

request fulfils his intention. Now, having asked the question, can Harry actually assume that, sooner or later, he
will know whether it is raining? Harry can assume that Sally knows that he does not know, and that she knows
that he is asking her to tell him. But, simply on the basis of having asked, Harry cannot assume that Sally will act
to tell him the weather: she is independent, and may, for example, be busy elsewhere.

In summary: an agent plans, explicitly or implicitly (through the construction of its software) to meet its. goals
ultimately by communicating with other agents, i.e. sending messages to them and receiving messages from
them. The agent will select acts based on the relevance of the act's expected ouicome or rational effect to its
goals. However, it cannot assume that the rational effect will necessarily result from sending the messages.

8.2 The SL Language

SL, standing for Semantic Language, is the fdrmal language used to define the semantics of the FIPA ACL. As
such, SL itself has to be precisely defined. In this section, we present the SL language definition and the
semantics of the primitive communicative acts.

8.2.1 Basis of the SL formalism

In SL, logical propositions are expressed in a logic of mental attitudes and actions, formalised in a first order

modal language with identity®! (see [Sadek 91a] for details of this logic). The components of the formalism used in
the following are as follows:

— PPy are taken to be closed formulas denoting propositions,

— ¢ and y are formula schemas, which stand for any closed proposition
— iand jare schematic variables which denote agents
— |=¢ means that ¢ is valid.

. The mental model of an agent is based on the representation of three primitive attitudes: belief, uncertainty and
choice (or, to some extent, goal). They are respectively formalised by the modal operators B, U, and C. Formulas
using these operators can be read as:

— Bip “j (implicitly) believes (that) p”
— Uip “jis uncertain about p but thinks that p is more likely than —p”
— Cip “i desires that p currently holds”

The logical model for the operator B is a KD45 possible-worlds-semantics Kripke structure (see, e.g., [Halpern &
Moses 85]) with the fixed domain principle (sese, e.g., [Garson 84]).

To enable reasoning about action, the universe of discourse involves, in addition to individual objects and agents,
sequences of events. A sequence may be formed with a single event. This event may be also the void event. The
language involves terms (in particular a variable e) ranging over the set of event sequences.

To talk about complex plans, events (or actions) can be combined to form action expressions:

— a,; a,is a sequence in which a, follows a,
— a, | ayisa nondeterministic choice, in which either a,happens or a,, but not both.

Action expressions will be noted a.

The operators Feasible, Done and Agent are introduced to enable reasoning about actions, as follows:
— Feasible(a, p) means that a can take place and if it does p will be true just after that
— Done(a, p) means that a has just taken place and p was true just before that

— Agent(i, a) means that i denotes the only agent performing, or that will be performing, the actions which
appear in action expression a.

— Single(a) means that a denotes an action expression that is not a sequence. Any individual action is
Single. The composite act a ; b is not Single. The composite act a | b is Single iff both a and b are

http://216.239.57.104/search?q=cache: Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

Single.

From belief, choice and events, the concept of persistent goal is defined. An agent i has p as a persistent goal, if /
has p as a goal and is self-committed toward this goal until i comes to believe that the goal is achieved or to
believe that it is unachievable. /ntention is defined as a persistent goal imposing the agent to act. Formulas as
PGip and Iip are intended to mean that “/ has p as a persistent goal” and “i has the intention to bring about p”,

respectively. The definition of / entails that intention generates a planning process. See [Sadek 92] for the details
of a formal definition of intention.

Note that there is no restriction on the possibility of embedding mental attitude or action operators. For example,
formula U; Bi II.Done(a, Bp) informally means that agent i believes that, probably, agent j thinks that j has ine

intention that action a be done before which ihas to believe p.

A fundamental property of the proposed logic is that the modelled agents are perfectly in agreement with their -
own mental attitudes. Formally, the following schema is valid:

|=¢<= Bl.d>
where ¢ is governed by a modal operator formalising a mental attitude of agent /.

8.2.2 Abbreviations

In the text below, the following abbreviations are used:
i) Feasible(a) = Feasible(a, True)
ii) Done(a)=Done(a, True)
iii) Possible(¢)= Ja)Feasible(a, ¢)
iv) Bif¢ =BovB—d
1) 1

Bif ¢means that either agent i believes ¢ or that it believes —¢.
1

v) Brefd(x)=(3 y)Bl, W) (x)=y
I
where 1 is the operator for definite description and (1x)8(x) is read “the (x which is) & Brefi 8(x)
means that agent jbelieves that it knows the (x which is) 3. '
vi) Uifé=UodvU-d
l 1)
Uifi¢ means that either agent i is uncertain (in the sense defined above) about ¢ or that it is
uncertain about —¢.
vii) Uref 3(x) =@y)U. (x)3(x) = y
l 1
UrefiS(x) has the same meaning as BrefiS(x), except that agent / has an uncertainty attitude with
respect to 3(x) instead of a belief attitude
vii) AB . ¢=BBB....¢
nij iji

introduces the concept of alternate beliefs, n is a positive integer representing the number of B
operators alternating between jand j.

In the text, the term "knowledge" is used as an abbreviation for "believes or is uncertain of".

8.3 Underlying Semantic Model

The components of a communicative act (CA) model that are involved in a planning process characterise both the
reasons for which the act is selected and the conditions that have to be satisfied for the act to be planned. For a

given act, the former is referred to as the rational effect or REZ, and the latter as the feasibility preconditions or
FP's, which are the qualifications of the act.

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

8.3.1 Property 1

To give an agent the capability of planning an act whenever the agent intends to achieve its RE, the agent should
adhere to the following property:

Let a, be an act such that:

k
i JIx) B.a, = x,
i) (Ix) iak X, |
i)y pisthe RE of ak and

k));

i) —C —Possible(Done(a
l

then the following formula is valid:
| p=1.Done(a, |..la)
1 l

where a,, ...,a, are all the acts of type a, .

k

This property says that an agent's intention to achieve a given goal generates an intention that one of the acts
known to the agent be done. Further, the act is such that its rational effect corresponds to the agent's goal, and
that the agent has no reason for not doing it.

The set of feasibility preconditions for a CA can be split into two subsets: the ability preconditions and the context-

relevance preconditions. The ability preconditions characterise the intrinsic ability of an agent to perform a given
. CA. For instance, to sincerely assert some proposition p, an agent has to believe that p. The context-relevance

preconditions characterise the relevance of the act to the context in which it is performed. For instance, an agent

can be intrinsically able to make a promise while believing that the promised action is not needed by the

addressee. The context-relevance preconditions cotrespond to the Gricean quantity and relation maxims.

8.3.2 Property 2

This property imposes on an agent an intention to seek the satisfiability of its FP’s, whenever the agent elects to
perform an act by virtue of property 1 El:

|=1. Done(a) = B Feasible(a) v IiB, Feasible(a)
l l 1

8.3.3 Property 3

If an agent has the intention that (the illocutionary component of) a communicative act be performed, it
necessarily has the intention to bring about the rational effect of the act. The following property formalises this
idea:

|= 1. Done(a) = li RE(a)
!

where RE(a) denotes the rational effect of act a.

8.3.4 Property 4

Consider now the complementary aspect of CA planning: the consuming of CA's. When an agent observes a CA,
it should believe that the agent performing the act has the intention (to make public its intention) to achieve the
rational effect of the act. This is called the intentional effect. The following property captures this intuition:

|= Bi(Done(a) A Agent(j, a) = ,j RE{a))

Note, for completeness only, that a strictly precise version of this property is as follows:

|= Bi(Done(a) A Agent(j, a) = lj B Ii RE(a))

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

8.3.5 Property 5

Some FP’s persist after the corresponding act has been performed. For the particular case of CA’s, the next
property is valid for all the FP’s which do not refer to time. In such cases, when an agent observes a given CA, it
is entitled to believe that the persistent feasibility preconditions hold:

=B Done(a) = FP(a))

8.4 Notation .

A communicative act model will be presented as follows:

<i, Acl{ j, C)>
FP: ¢,
RE: ¢,

where i is the agent of the act, j the recipient, Act the name of the act, C stands for the semantic content or
propositional content, and ¢, and ¢, are propositions. This notational form is used for brevity, only within this

section on the formal basis of ACL. The correspondence to the standard transport syntax adopted above is
illustrated by a simple translation of the above example:

(Act
:sender i
:receiver j
:content C)

Note that this also illustrates that some aspects of the operational use of the FIPA-ACL fall outside the scope of
this formal semantics but are still part of the specification. For example, the above example is actually incomplete
without : 1language and : ontology parameters to given meaning to C, or some means of arranging for these to
be known.

8.5 Primitivé Communicative Acts

8.5.1 The assertive Inform

One of the most interesting assertives regarding the core of mental attitudes it encapsulates is the act of
informing. An agent i is able to inform an agent j that some proposition p is true only if i believes p (i.e., only if
Bip). This act is considered to be context-relevant only if i does not think that j already believes p or its negation,

or that j is uncertain about p (recall that belief and uncertainty are mutually exclusive). If i is already aware that j
does already believe p, there is no need for further action by i. If i believes that j believes not p, i should
disconfirm p. If jis uncertain about p, i should confirm p.

<i, INFORM (j, ¢)>
FP: B A~ B(Bifp v Uifg)

RE: B¢
J
The FP’s for inform have been constructed to ensure mutual exclusiveness between CA’s, when more that one
CA might deliver the same rational effect.

Note, for completeness only, that the above version of the Inform model is the operationalised version. The
complete theoretical version (regarding the FP'’s) is the following:

<i, INFORM (j, $)>

FP: BOAS—AB . ~B4A-BBEAS,~AB . Bo
i i J

myj Jj

%y

RE: B¢
J

8.5.2 The directive Request

http://216.239.57.104/search?q=cache:Ep8p2hgOIK 0J: www.fipa.org/specs/fipa00018/0CO000... 4/14/04

The following model defines the directive Request.
<i, REQUEST (j, a)>
FP: FP(a) [M] A Bi Agent(j, a) A Bi —|PGj Done(a)
RE: Done(a)
where:
— ais a schematic variable for which any action expression can be substituted;
— FP(a) denotes the feasibility preconditions of a;

— FP(a) [Aj] denotes the part of the FP’s of a which are mental attitudes of /.

8.5.3 Confirming an uncertain proposition: Confirm

The rational effect of the act Confirm is identical to that of most of the assertives, ie., the addressee comes to
believe the semantic content of the act. An agent i is able to confirm a property p to an agent j only if i believes p
(Le., Bip). This is the sincerity condition an assertive act imposes on the agent performing the act. The act

Confirm is context-relevant only if i believes that j is uncertain about p (i.e., Bi Uj p). In addition, the analysis to

determine the qualifications required for an agent to be entitled to perform an Inform act remains valid for the case
of the act Confirm. These qualifications are identical to those of an Inform act for the part concerning the ability
preconditions, but they are different for the part concerning the context relevance preconditions. Indeed, an act
Confirm is irrelevant if the agent performing it believes that the addressee is not uncertain of the proposition
intended to be confirmed.

In view of this analysis, the following is the model for the act Confirm:

<i, CONFIRM(j, ¢)>
FP:BoABUS
iy

RE: B¢
J

8.5.4 Contradicting knowledge: Disconfirm

The Confirm act has a negative counterpart: the Disconfirm act. The characterisation of this act is similar to that of
the Confirm act and leads to the following model:

<i, DISCONFIRM(j, ¢)>
FP: B¢ AB._U¢ v B,
~6 B U$ v BY)

RE: B/"‘¢
8.6 Composite Communicative Acts

An important distinction is made between acts that can be carried out directly, and those macro acts which can be
planned (which includes requesting another agent to perform the act), but cannot be directly carried out. The
distinction centres on whether it is possible to say that an act has been done, formally Done(Action, p) (see §8).
An act which is composed of primitive communicative actions (inform, request, confirm), or which is composed
from primitive messages by substitution or sequencing (via the “,” operator), can be performed directly and can be
said afterwards to be done. For example, agent ican inform jthat p; Done(<i, inform(j, p) >) is then true, and the

meaning (i.e. the rational effect) of this action can be precisely stated.

However, a large class of other useful acts is defined by composition using the disjunction operator (written “").
By the meaning of the operator, only one of the disjunctive components of the act will be performed when the act
is carried out. A good example of these macro-acts is the inform-ref act. Inform-refis a macro act defined formally
by:

<i, INFORM-REF(j, \x8(x) > = <i, INFORM(j, .x8(x) = r,)> | ... | <i, INFORM(j, u(x) = r,)>

where n may be infinite. This act may be requested (for example, j may request i to perform it), or i may plan to

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

perform the act in order to achieve the (rational) effect of j knowing the referent of 3(x). However, when the act is
actually performed, what is sent, and what can be said to be Done, is an inform act.

Finally an inter-agent plan is a sequence of such communicative acts, using either composition operator, involving
two or more agents. Communications protocols (q.v.) are primary examples of pre-enumerated inter-agent plans.

8.6.1 The closed-question case

In terms of illocutionary acts, exactly what an agent i is requesting when uttering a sentence such as “Is p?”
toward a recipient j, is that j performs the act of “informing i that p” or that j performs the act “informing i that —p".
We know the model for both of these acts: <j, INFORM (i, ¢)>. In addition, we know the relation “or” set between
these two acts: it is the relation that allows for the building of action expressions which represent a non-
deterministic choice between several (sequences of) events or actions.

In fact, as mentioned above, the semantic content of a directive refers to an action expression; so, this can be a
disjunction between two or more acts. Hence, by using the utterance “Is p?”, what an agent i requests an agent j
to do is the following action expression:

<j, INFORM (i, p)> | <j, INFORM (i, —p)>

It seems clear that the semantic content of a directive realised by a yes/no-question can be viewed as an action
expression characterising an indefinite choice between two CA’s Inform. In fact, it can also be shown that the
binary character of this relation is only a special case: in general, any number of CA's Inform can be handled. In
this case, the addressee of a directive is allowed to choose one among several acts. This is not only a theoretical
generalisation: it accounts for classical linguistic behaviour traditionally called Alternatives question. An example
of an utterance realising an alternative question is “Would you like to travel in first class, in business class, or in
economy class?”. In this case, the semantic content of the request realised by this utterance is the following
action expression:

<j, INFORM (i, p|)> | <, INFORM (i, p,)> | <j, INFORM (i, p,)>

where p 1 p2 and p3 are intended to mean respectively that j wants to travel in first class, in business class, or in
2

economy class.

As it stands, the agent designer has to provide the plan-oriented model for this type of action expression. In fact, it
would be interesting to have a model which is not specific to the action expressions characterising the non-
deterministic choice between CA'’s of type Inform, but a more general model where the actions referred to in the
disjunctive relation remain unspecified. In other words, to describe the preconditions and effects of the expression
a | a2| |a where a, a, .. a are any action expressions. It is worth mentioning that the goal is to

characterise this action expressnon as a disjunctive macro-act which is planned as such; we are not attempting to
characterise the non-deterministic choice between acts which are planned separately. In both cases, the result is
a branching plan but in the first case, the plan is branching in an a priori way while in the second case it is
branching in an a posteriori way.

An agent will plan a macro-act of non-deterministic choice when it intends to achieve the rational effect of one of
the acts composing the choice, no matter which one it is. To do that, one of the feasibility preconditions of the acts
must be satisfied, no matter which one it is. This produces the following model for a disjunctive macro-act:

ala,|..la

1'72 n
FP: FP(al) v FP(a2) V..V FP(an)
RE: RE(al) v FiE(az) V..V RE(an)

where FP(a,) and RE(a,) represent the FP's and the RE of the action expression a, respectively.

k k k

2
Because the yes/no-question, as shown, is a particular case of alternatives question, the above model can be
specialised to the case of two acts Inform having opposite semantic contents. Thus, we get the following model:
<i, INFORM(j, ¢)> | <i, INFORM(j, =)>

FP: Bifl,¢ A —.Bi(Biflzb v Uifld))

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J.www.fipa.org/specs/fipa00018/0C000... 4/14/04

RE: Bif
J

In the same way, we can derive the disjunctive macro-act model which gathers the acts Confirm and Disconfirm.
We will use the abbreviation <i, CONFDISCONF{ j, ¢)> to refer to the following model:

<i, CONFIRM(j,)> | <i, DISCONFIRM(j, $)>
FP: Bif AB.U $
i iy

RE: Bif $
J

8.6.2 The query-if act:

Starting from the act models <j, INFORM-IF(i, ¢)> and <i, REQUEST(, a)>, itis possible to derive the query-if
act model (and not plan, as shown below). Unlike a confirm/disconfirm-question, which will be addressed below,
an query-if act requires the agent performing it not to have any knowledge about the proposition whose truth
value is asked for. To get this model, a transformation'? has to be applied to the FP's of the act <j, INFORM-IF
(i, ¢)> and leads to the following model for a query-if act:

<i, QUERY-IF(j, ¢)> = <i, REQUEST(}, <j, INFORM-IF(i, $)>)>
FP: —Bif.4 A —Uif$ A B, =PG, Done(<j, INFORM-IF (i, ¢)>)

RE: Done(<j, INFORM(i, ¢)> [<j, INFORM(i, =¢)>)

8.6.3 The confirm/disconfirm-question act:
In the same way, it is possible to derive the following Confirm/Disconfirm-question act model:

<i, REQUEST(j, <j, CONFDISCONF(i, ¢)>)>
FP: Uid) A Bi—,PGIDone(<j, CONFDISCONF(i, ¢)>)

RE: Done(<j, CONFIRM(i, b)> | <j, DISCONFIRM(i, $)>)

8.6.4 The open-question case:

Open question is a question which does not suggest a choice and, in particular, which does not require a yes/no
answer. A particular case of open questions are the questions which require referring expressions as an answer.
They are generally called wh-questions. The “wh” refers to interrogative pronouns such as “what”, “who”, “where”,
or “when”. Nevertheless, this must not be taken literally since the utterance “How did you travel?” can be
considered as a wh-question.

A formal plan-oriented model for the wh-questions is required. In the model below, from the addressee’s
viewpoint, this type of question can be viewed as a closed question where the suggested choice is not made
explicit because it is too wide. Indeed, a question such as “What is your destination?” can be restated as “What is
your destination: Paris, Rome,... ?”.

The problem is that, in general, the set of definite descriptions among which the addressee can (and must)
choose is potentially an infinite set, not because, referring to the example above, there may be an infinite number
of destinations, but because, theoretically, each destination can be referred to in potentially an infinite number of
ways. For instance, Paris can be referred to as “the capital of France”, “the city where the Eiffel Tower is located”,
“the capital of the country where the Man-Rights Chart was founded”, etc. However, it must be noted that in the
context of man-machine communication, the language used is finite and hence the number of descriptions
acceptable as an answer to a wh-question is also finite.

When asking a wh-question, an agent j intends to acquire from the addressee i an identifying referring expression
(IRE) [Sadek 90] for a definite description, in the general case. Therefore, agent jintends to make his interlocutor j
perform a CA which is of the following form:

<i, INFORM(j, u(x) = r)>

where ris an IRE (e.g., a standard name or a definite description) and x8(x) is a definite description. Thus, the
semantic content of the directive performed by a wh-question is a disjunctive macro-act composed with acts of the
form of the act above. Here is the model of such a macro-act:

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

<i, INFORM(j, ux8(x) = 1,)> | ... | <i, INFORM(j, 1x3(x) = 1,)>

where r, are IREs. To deal with the case of closed questions, the generic plan-oriented model proposed for a

k

disjunctive macro-act can be instantiated for the account of the macro-act above. Note that the following
equivalence is valid:

(Bi wd(x) =1, v Bi wd(x)=r,v..)=@3y) Bi uo(x) =y

This produces the following model, which is referred to as <i, INFORM-REF(j, 1x 8(x))>:
<j, INFORM-REF(i, wx 8(x))>
FP: Bref 8(x) An—B.QLref 8(x)
i i

RE: Bref 3(x)
] .

where Bret;. &(x) and Urefj 8(x) are abbreviations introduced above, and areg.ﬁ(x) is an abbreviation defined as:

aret;, d(x) = BreG_ S(x) v UreG, &(x)

Provided the act models <j, INFORM-REF (i, 1x 3(x))> and <i, REQUEST (j, a)>, the wh-question act model can
be built up in the same way as for the yn-question act model. Applying the same transformation to the FP’s of the
act schema <j, INFORM-REF (i, 1x5(x))>, and by virtue of property 3, the following model is derived:

<i, REQUEST(j, <j, INFORM-REF(i, x 8(x)>)>
FP: —10Lrefl. d(x)nB. —.PGI. Done(<j, INFORM-REF(i, 1x5(x))>)
1

RE: Done(<i, INFORM (j, 1x3(x) = r, > | ... | <i, INFORM(j, 1x8(x) = n)>)

8.6.5 Summary definitions for all standard communicative acts
8.6.5.1 Supporting definitions

Enables(e,p) =
Done(e, —-p)rp

After(e, e,) =
Done(e,) n
(Ve') Feasible(e', (7) (f=e,;e,;e) v(f=e';e,))
Before(e,, e,) = |
After(e,, e,)
Will-occur-when(x, p(e, x)) =
(7e') Done(e'; x, Feasible(e’, p(e', x)))

Enabled(e,p) =
Done(e, —-p) p

8.6.5.2 Agree
To be completed.
8.6.5.3 Accept-proposal
<i, accept-proposal(j, <j, a>, p(e, <j,a>))>=
<i, inform(j, Ii Will-occur-when(<j, a>, p(e, <j,a>)))>

i informs j that i has the intention that j will perform action a just as soon as the precondition parameterised by the

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J. www fipa.org/specs/fipa00018/0C000... 4/14/04

action and some event in the future becomes true.
8.6.5.4 Propose
<i, propose(j, <i, a>, p(e, <i,a>)>=
~ <i, inform(j, Ve Feasible(e, Done(<j, inform(i, Ii Done(<i,a>) A
p(e, <i,a>) = |, Done(<i, a>) A
Feasible(</, a>))) >

i informs j that, once j informs i that | has adopted the intention for i to pérform action a, and the preconditions for i
performing a have been established, it will be feasible for i to perform a and i will adopt the intention to perform a.

8.6.5.5 Cancel

<i,cancel(j, a)>=
<i, disconfirm(j, ; Done(a)>

Cancel is the action of cancelling any form of requested action. In other words, an agent i has requested an agent
j to perform some action, possibly if some condition holds. This has the effect of i informing j that i has an
intention. When i comes to drop its intention, it has to inform jthat it no longer has this intention, i.e. a disconfirm.

8.6.5.6 cfp

<i,cfp(j, <ja>, p(e <ja>))>=
<i, query-ref(j, x
(Ij Ve Feasible(e, Done(e ; <i, inform(j, |, <j, a>) >) A

((X = p’(e, <jr a>)) A p(e, <jl a>)
=
I- Done(<j, a>) A Feasible(<j, a>))))) >

y requests j to inform i of the additional preconditions (i.e. predlcate p") j would requnre before performing the action -
a with i's preconditions (i.e. predicate p).

8.6.5.7 confirm

<i, confirm(j, ¢)>

FP: Bn Bind)

RE: Bj¢
Confirm is a primitive communicative act.
8.6.5.8 Disconfirm

<i, disconfirm(j, ¢)>

FP: B¢ Bi(Uj¢V Bicb)

RE: Bj—.¢
Disconfirm is a primitive communicative act.
8.6.5.9 Failure

<i, failure(j a,p)> =
<i, inform(j, (3e) Single(e) A Done(e, |, Done(a)) Ap A .-
(p = (—~Done(a) -l Done(a))))>
i informs j that, in the past, i had the intention to do action a, but because p was true, a was not done and i no
longer has the intention to do a.
8.6.5.10 inform

<i,inform(j, ¢)>
FP: Bon- By(Bificbv Uifj¢)

http://21 6.'23 9.57.104/search?q=cache:Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

RE: Bi¢
Inform is a primitive communicative act.
8.6.5.11 inform-if

<i, inform-if(j,p)> =
<j, inform(j, p)> | <i, inform(j, -p)>

Inform-if represents two possible courses of action: i informs j that p, or i informs j that not p.
8.6.5.12 inform-ref
<i, inform-ref(j, 1xx 8(x))> =
<i, inform(j, w 8(x) =r,)> | ... | <i, inform(j, x 8(x) =1,)>
Inform-ref represents an unbounded, possibly infinite set of possible courses of action, in which i informs j of the
referent of x.
8.6.5.13 query-if

<i, query-if(j, ¢) =
<j, request(j, <j, inform-if(i, ¢)>)>

i requests j that j informs i whether or not ¢ is true.
8.6.5.14 query-ref

<i, query-ref(j, 1x 8(x))=
<i, request(j, <j, inform-ref(i, 1x 8(x))>)>

i requests j that j informs i of the referent of x
8.6.5.15 refuse

<i, refuse(j a, ¢)> =
<i, disconfirm(j, Feasible(a))> ;
<i, inform(j, ¢n (¢= (—~Done(a) A=l Done(a))))>

i informs j that action a is not feasible, and further that, because of proposition ¢, a has not been done and i has
no intention to do a.
8.6.5.16 reject-proposal
<i, reject(j, <j,a>, ¢)> =
<i, inform(j, ¢rdp=-1, Done(< j, a>))>
i informs j that, bécause of proposition ¢, i does not have the intention for j to perform action a.
8.6.5.17 request
<i, request(j, a)>
FP: FP(a) [N] A B, Agent(j, a) A—B, PGi Done(a)
RE: Done(a)
Request is a primitive communicative act.
8.6.5.18 request-when

<i, request-when(j, <j, a>, p)> =
<i, inform(j, |, (3e) Enables(e, ij) = After(e, <j, a>))>

i informs j that i intends that, when some event happens that enables j to believe p, that event will be followed by
performing action a.

8.6.5.19 Request-whenever

<i, request-whenever(j, <j, a>, p)>=
<i, inform(j, |; Done(a, (Je) Enables(e, Bj Pp)))>

http://216.239.57.104/search?q=cache:Ep8p2hg0IKO0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

iinforms jthat i intends that jwill not believe p until jcomes to believe p and also performs a.
8.6.5.20 subscribe
<i, subscribe(j, 1x 3(x))> =
<i, inform(j, I, (Ve) (ve') (Vy)
Feasible(e; €',
Done(€', -Bj (i x 3(x))=y) A
Bj (ix 8(x))=y) =
Feasible(e ; €', (Ve1) Feasible(e1) =
(3 e2) (3 e3)

(el = (e2 ; <j, inform(i, (ix 3(x)) =y)> ; €3))))>
8.6.5.21 not-understood
<i, not-understood(j, a)> =

FP: to be completed
RE: to be completed

not-understood is a primitive communicative act.
8.7 Inter-agent Communication Plans
The properties of rational behaviour stated above in the definitions of the concepts of rational effect and of

feasibility preconditions for CA’S suggest an algorithm for CA planning. A plan is built up by this algorithm builds
up through the inference of causal chain of intentions, resulting from the application of properties 1 and 2.

With this method, it can be shown that what are usually called “dialogue acts” and for which models are
postulated, are, in fact, complex plans of interaction. These plans can be derived from primitive acts, by using the
principles of rational behaviour. The following is an example of how such plans are derived.

The interaction plan “hidden” behind a question act can be more or less complex depending on the agent mental
state when the plan is generated.

Let a direct question be a question underlain by a plan which is limited to the reaction strictly legitimised by the
question. Suppose that the main content of /s mental state is:

B_ Bif ¢,
I j
1. Bif ¢
1 1
By virtue of property 1, the intention is generated that the act <j, INFORM-IF(i, ¢)> be performed. Then,

according to property 2, there follows the intention to bring about the feasibility of this act. Then, the problemis to
know whether the following belief can be derived at that time from /s mental state:

Bi(Bn} TN (—»Bj Blfid)v Ulfi)
This is the case with /s mental state. By virtue of properties 1 and 2, the intention that the act

<i, REQUEST (j, <j, INFORM-IF (i, $)>)> be done and then the intention to achieve its feasibility, are inferred.
The following belief is derivable:

1 1 l
Now, no intention can be inferred. This terminates the planning process. The performance of a direct strict-yn-

question plan can be started by uttering a sentence such as “Has the flight from Paris arrived?”, for example.

Given the FP’s and the RE of the plan above, the following model for a direct strict-yn-question plan can be
established:

<i, YNQUESTION(j, ¢)>
FP: B, Bif ¢ A—Bif & n=Uif. ¢ A B, B (Bif. ¢ v Uif.)
i i i ij i i

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J.www fipa.org/specs/fipa00018/0C000... 4/14/04

RE: Bif, ¢
l

http://216.239.57.104/search?q=cache: Ep8p2hg0IKOJ:www fipa.org/specs/fipa00018/0C000... 4/14/04

9 References

To be completed.
[Austin 62] Austin J. L. How to Do Things with Words. Clarendon Press 1962

[Cohen & Levesque 90] Cohen P.R. & Levesque H.J. Intention is choice with commitment. Artificial Intelligence,
42(2-3):213--262, 1990.

[Cohen & Levesque 95] Cohen P.R. & Levesque H.J. Communicative actions for artificial agents; Proceedings of
the First International Conference on Multi-agent Systems (ICMAS'95), San Francisco, CA, 1995.

[Finin et al 97] Finin T., Labrou Y. & Mayfield J., KQML as an agent communication language, Bradshaw J.
ed., Sofware agents, MIT Press, Cambridge, 1997.

[Freed & Borenstein 1996] Freed N & Borenstein N. Multipurpose Internet Mail Extensions (MIME) Part One:
Format of the Internet Message Bodies. Internic RFC2045. ftp://ds.internic.net/rfc/rfc2045. txt

[Genesereth & Fikes 92] Genesereth M.R. & Fikes R.E. Knowledge interchange format. Technical report Logic-
92-1, CS Department, Stanford University, 1992.

[Garson 84] Garson, G.W. Quantification in modal logic. In Gabbay, D., & Guentner, F. eds. Handbook of
philosophical logic, Volume II: Extensions of classical Logic. D. Reidel Publishing Company: 249-307. 1984.

[Guinchiglia & Sebastiani 97] Guinchiglia F. & Sebastiani R., Building decision procedures for modal logics from
propositional decision procedures: a case study of Modal K. Proceedings of CADE 13, published in Lecture Notes
in Artificial Intelligence. 1997.

[Halpern & Moses 85] Halpern, J.Y., & Moses Y. A guide to the modal logics of knowledge and belief: a
preliminary draft. Proceedings of the 1JCAI-85, Los Angeles, CA. 1985.

[KQML93] External Interfaces Working Group, Specification of the KQML agent-communication language,
1993. '

[Labrou & Finin 94] Labrou Y. & Finin T., A semantic approach for KQML - A general purpose communication
language for software agents, Proceedings of the 3rd International Conference on Information Knowledge
Management, November 1994. v

[Labrou 96] Labrou Y. Semantics for an agent communication language. PhD thesis dissertation submission,
University of Maryland Graduate School, Baltimore, September, 1996.

[Sadek 90] Sadek M.D., Logical task modelling for Man-machine dialogue. Proceedings of AAAI'90. 970-975,
Boston, MA, 1990.

[Sadek 91a] Sadek M.D. Attitudes mentales et interaction rationnelle: vers une théorie formelle de la-
communication. Thése de Doctorat Informatique, Université de Rennes |, France, 1991.

[Sadek 91b] Sadek M.D. Dialogue acts are rational plans. Proceedings of the ESCA/ETRW Workshop on the
structure of multimodal dialogue, pages 1-29, Maratea, ltaly, 1991.

[Sadek 92] Sadek M.D. A study in the logic of intention. Proceedings of the 3rd Conference on Principles of
Knowledge Representation and Reasoning (KR'92), pages 462-473, Cambridge, MA, 1992,

[Sadek et al 95] Sadek M.D., Bretier P., Cadoret V., Cozannet A., Dupont P., Ferrieux A., & Panaget F. A co-
operative spoken dialogue system based on a rational agent model: A first implementation on the AGS
application. Proceedings of the ESCA/ETR Workshop on Spoken Dialogue Systems : Theories and Applications,
Vigso, Denmark, 1995.

[Searle 69] Searle J.R. Speech Acts, Cambridge University Press, 1969.

Additional suggested reading

[Bretier & Sadek 96] Bretier P. & Sadek D. A rational agent as the kernel of a cooperative spoken dialogue
system: Implementing a logical theory of interaction. In Muller J.P., Wooldridge M.J., and Jennings N.R. (eds)
Intelligent agents Il - Proceedings of the third ATAL, LNAI, 1996.

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

[Sadek 94] Sadek M. D. Belief reconstruction in communication. Speech Communication Journal'94, special
issue on Spoken Dialogue, 15(3-4), 1994.

[Sadek et al 97] Sadek M. D., P. Bretier, & F. Panaget. ARTIMIS: Natural language meets rational agency.
Proceedings of IJCAI '97, Nagoya, Japan, 1997.

http://216.239.57.104/search?q=cache: Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

Annex A
(informative)

ACL Conventions and Examples

This annex describes certain conventions that, while not a mandatory part of the specification, are commonly
adopted practices that aid effective inter-agent communications. This annex will also serve to provide exainples of
ACL usage for illustrative purposes.

A.1 Conventions
A.1.1 Conversations amongst multiple parties in agent communities

There is commonly a need in inter-agent dialogues to involve more than two parties in the conversation. A typical
example would be of agent i posing a question to agent jby sending a query-if message. Agent i believes that jis
able to answer the query, but in fact j finds it necessary to delegate some or all of the task of answering the
question to another agent k.

The formal definition of the query-if communicative act reads that i is requesting j that j informs i of the truth of
proposition p. Therefore, even if j does delegate all of the query to k, the semantics of ACL requires that j will be
the one to perform the act of informing i. K cannot inform i directly. By extension, any chain of such delegation
acts will have to be unwound in reverse order to conform to the current specification.

The restriction that a delegating agent in such a scenario must, in effect, remain “in the loop" clearly does not alter
the meaning of the act (except, perhaps, that it exposes i to the existence of k), but it can be critiqued on the
grounds of overall efficiency. A future version of this specification may generalise the semantic definition to allow
delegation which includes passing responsibility for answering the originator of the request directly.

See also §A.1.4 Negotiating by exchange of goals.
A.1.2 Maintaining threads of conversation

Agents are frequently implemented with the ability to participate in more than one conversation at the same time.
These conversations may all be with different agents, or may be with the same agent but in the context of
different tasks or subjects. The internal representation and maintenance of structures to manage the separate
conversations is a matter for the agent designer. However, there must be some support in the ACL for the
concept of separate conversations, else an agent will have no standardised way of disambiguating the
conversational context in which to interpret a given message. ACL supports conversation threading through the
use of standard message parameters which agents are free (but not required) to use. These are: :reply-with, :in-
reply-to and :conversation. Additional contextual information to assist the agent to interpret the meaning of a
message is provided through the protocol! identifier, :protocol.

The first case is one of annotating a message which is expected to generate a response with an expression which
serves to abbreviate the context of the enquiry. This abbreviation is then cross-referenced in the reply. For
example, agent i asks agent j if the summer in England was wet. Without any ability to refer back to the question, j
cannot simply say "yes" because that would be potentially ambiguous. J can disambiguate its reply by saying
“yes, the summer in England was wet", or it could say “in response to your question, the answer is yes". Different
styles and implementations of agents might adopt either of these tactics. The latter case is performed through the
use of :reply-with and :in-reply-to. The :reply-with parameter is used to introduce an abbreviation for the query, :in-
reply-to is used to refer back to it. For example:

(ask-if
:sender I
:receiver j
:content (= (weather England (summer 1997)) wet)
:ontology meteorology
:reply-with query-17)

http://216.239.57.104/search?q=cache:Ep8p2hgOIK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

(inform
:sender j
:receiver I
:content true
:in-reply-to query-17)

In addition to maintaining.context over instances of exchanges of communicative acts, the agents may also wish
to maintain a longer lived conversational structure. They may be exchanging information about the weather in the
UK, and at the same time be discussing that of Peru. The conversation can provide additional interpretative
context: for example the question "what was the weather like in the summer?” is meaningful in the context of a
conversation about UK meteorology, and rather less so if no such context is known. In addition, the conversation
may simply be used by the agent to manage its communication activities, particularly if conversations are strongly
link to current tasks. The parameter :conversation-id is used to denote a word which identifies the conversation.

A.1.3 Initiating sub-conversations within protocols

The use of protocols (c.f. §7) in agent interactions is introduced in order to provide a tool that facilitates the
simplification of the design of some agents, since the agent can expect to know which messages are likely to be
received or need to be generated at each stage of the conversation. However, this simplicity can also be
restrictive: there may legitimately be cause to step outside the prescribed bounds of the protocol. For example, in
a contract net protocol, the manager sends out a cfp message, which should normally be followed by a propose
or a refusal. Suppose that the contractor, however, wishes some additional information (perhaps a clarification).
Replying to the cfp with, for example, a query-if action would break the protocol. While agents with powerful,
complete reasoning capabilities can be expected to deal appropriately with such an occurrence, simpler agents,
adhering closely to the protocol, may not. Nor is it a solution to anticipate all such likely responses in the protocol:
such anticipation is unlikely to cover every possibility, and anyway the resulting complexity would defeat the
primary purpose of the protocol.

Instead, the convention is suggested that adopting a new conversation-id (see above) for a reply is sufficient to
indicate to the receiver that the reply should not be considered the next step in the protocol. It should not cause a
not-understood message to be generated (the normal occurrence if a protocol is broken unexpectedly). A problem
remains that adopting a new conversation-id does not make available to the agents involved the convenience of
knowing that a rich context is shared. This release of the specification does not address ‘the issue of structured
conversation-id's, in which the idea of a context-sharing sub-conversation is supported, though a future version
may do so. In the interim, it is suggested that, where a given domain finds that this capability is a necessity, a
domain specific solution to the problem of defining conversation-id's is adopted.

A.1.4 Negotiating by exchange of goals

A common practice amongst agent communities is to interact and negotiate at the level of goals and
commitments, rather than explicit commands. Indeed, some researchers will say that such indirect manipulation is
one of the most compelling arguments for the effectiveness of the agent technology paradigm.

While the ACL semantics does include a concept of goal and intention, the core communicative act for influencing
another agent's behaviour is the request action. The main argument to request is an action, not a goal, which
requires the requesting agent to be aware of the actions that another agent can perform, and to plan accordingly.
In many instances, the agent may wish to communicate its objectives, and leave the reasoning and planning
towards the achievement of those objectives to the recipient agent.

Since no achieve-goal action is currently built-in to the ACL, it is common to embed the goal in an expression in
the chosen content language which expresses the action of achieving the goal. This action can then be requested
by the sending agent. Precise details of such a goal encoding depend on the chosen content language. An
example might be:

(request
:sender i
:receiver j
:content (achieve (at (location 12 84) boxl7))
:ontology factory-management
:reply-with query-17)

http://216.239.57.104/search?q=cache:Ep8p2hg0IK 0J: www. fipa.org/specs/fipa00018/0C000... 4/14/04

Note, for symmetry, that a converse domain action achieved can also be used to map actions to goals.

A.2 Additional examples

A.2.1 Actions and results

In general, the semantic model underlying the ACL states that an action does not have a value. Clearly all actions
have effects, which are causally related to the performance of the action. However, it may be difficult or
impossible to determine the causal effects of an action. Even a posterori observation may not be able to
determine all of the effects of an action. Thus, in general, actions do not have a result. SL allows the capture of
some intuitive notions about the effects of actions by associating the occurrence of the action with statements
about the state of the world through the Done and Feasible operators.

However, there is a class of actions which are defined as computational activities, in which it is useful to say that -
the action has a result. For example, the action of adding two and two in a computational device. These actions
are related to the result they produce through the resuit predicate, which is the remit of a content language and
given domain theory. In defining the result predicate, it should be noted that it takes as an argument a term, not
an action which is a separate category.

Consider the foliowing three example actions:

A: (request :sender i1 :receiver j
:content (action j action))

B: (query-ref :sender i :receiver j
:content (iota ?xXx (result (action-term Jj action) 2?2x))

C: (request :sender i1 :receiver j
:content (action j action)) ;
(inform-ref :sender j :receiver i
:content (iota ?x (result (action-term j action) ?x)))

The question then arises as to the differences between these actions. In summary, the meaning of the actions,
are, respectively:

A:Agent i says to | "do action", but does not say anything about the result
B:Agent i says to j "tell me the result of doing action”
C:Agent i says to j "do action, and then inform me of the result of doing action”.

In action B, the question can legitimately be asked whether the action is actually performed or not. it should be
noted that result is a function in the domain language, SL in this case. Thus this question must really be devolved
to the domain representation language. Some languages may be able to compute the meaning of an action
without performing that action: this would be very useful for planning agents who may not wish to perform an
action before considering its likely effects!!l. Other agents, such as expression simplifiers, do not want to be
overburdened with the complexity of performing the simplification, then separately having to inform the questioner
of the result of the simplification. Of course, if the meaning of the result predicate in a given context is that the
action does, in fact, get done, then example C will likely result in the action being done twice.

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

Annex B
(normative/informative)

SL as a Content Language

This annex introduces a concrete syntax for the SL language that is compatible with the description in §8. This
syntax, and its associated semantics, are suggested as a candidate content language for use in conjunction with
FIPA ACL. In particular, the syntax is defined to be a sub-grammar of the very general s-expression syntax
specified for message content in §6.4.

This content language is included in the specification on an informative basis. It is not mandatory for any FIPA
specification agent to implement the computational mechanisms necessary to process all of the constructs in this
language. However, SL is a general purpose representation formalism that may be suitable for use in a number of .
different agent domains.

Statement of conformance

The following definitions of SL, and subsets SLO, SL1 and SL2 are normative defininitions of these languages.
That is, if a given agent chooses to implement a parser/interpreter for these languages, the following definitions
must be adhered to. However, these languages are informative suggestions for the use of a content language: no
agent is required as part of part 2 of this FIPA 97 specification to use the following content languages. However it
should be noted that certain other parts of the FIPA 97 specification do make normative use of (some of} the
following languages.

B.1 Grammar for SL concrete syntax

= SLWff
| SLIdentifyingExpression
| SLActionExpression.

SLContentExpression

SLWEf = SLAtomicFormula
I ” (ll "notll SLWff ") "
| "(" "and" SLWff SLWEf ")"
| "(" "or" SLWEf SLWEE ") "
| "(" "implies" SLWEf SLWEE ") "
| "(" "equiv" SLwff SLWff ™) "
| "(" SLQuantifier SLVariable SLWff ")"
| "(" SLModalOp SLAgent SLWEf ")"
| "(" SLActionOp SLActionExpression ")".
| "(" SLActionOp
SLActionExpression SLWEf ")".
SLAtomicFormula = SLPropositionSymbol
I ll(ll "1 SLTerm SLTerm ")"
| "(" "result" SLTerm SLTerm ")"
| "(" SLPredicateSymbol SLTerm* ")"
| true
| false.
SLQuantifier = "forall"
| "exists".
SLModalOp = "B"
I "U"
I IIPG"
| "Ill.
SLActionOp = "feasible"
| "done".

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

SLTerm

SLIdentifyingExpression
SLFunctionalTerm

SLConstant

NumericalConstant

SLVariable

SLActionExpression

SLPropositionSymbol
SLPredicateSymbol
SLFunctionSymbol
SLAgent

B.1.1 Lexical definitions

Word

VariableIdentifier

IntegerLiteral

FloatingPointLiteral

DecimalLiteral
HexLiteral
Exponent

StringLiteral

SLvariable

SLConstant
SLFunctionalTerm
SLActionExpression
SLIdentifyingExpression.

"("™ "jota" SLVariable SLWff ")"
" (" SLFunctionSymbol SLTerm* ")".

NumericalConstant
Word
StringLiteral.

Integerliteral
FloatingPointLiteral.

VariableIdentifier.

"(" "action" SLAgent SLFunctionalTerm ")"
ACLCommunicativeAct

"("™ "|" SLActionExpression SLActionExpression ")"
"(" ";" SLActionExpression SLActionExpression ")".

Word.
Word.
Word.
AgentName.
[~ "\OXOOII —_ ll\oxlf'l,
ll(", ")ll, ll#ll' "0"_‘"9", "_", ll?ll]
[~ "\OXOO" _ "\Oxlf",
"(ll’ ")"] *-
"?"
[~ "\OXOO" - "\Oxlf",
"(ll’ ")ll] *‘
("-")? DecimallLiteral
("-")? HexLiteral.
([“0"—‘"9"])+ ".ll (["0"_"9"])+ (Exponent)?
(["0"-"9"])+ Exponent.
[lloll_llgll]+.
lloll ["x"’ "X"] (["0"—"9", llall_"f"' "AII_IIFII])+.
["e", "E"] ([ll+ll,"_ll])? (["0"—"9"])+,)
"\llll
([~ "\"ll] I ll\\\"")*
"\ll".

B.2 Notes on SL content language semantics

This section contains explanatory notes on the intended semantics of the constructs introduced in §B.1 above.

B.2.1 Grammar entry point: SL content expression

An SL content expression may be used as the content of an ACL message. There are three cases:

— A proposition, which may be assigned a truth value in a given context. Precisely, it is a well-formed

http://216.239.57.104/search?q=cache:Ep8p2hg0IK 0J:www.fipa.org/specs/fipa00018/0C000... 4/14/04

formula using the rules described in SLWff. A proposition is used in the inform act, and other acts derived

from it.

An action, which can be performed. An action may be a single action, or a composite action built using
the sequencing and alternative operators. An action is used as a content expression when the act is the
request act, and other CA's derived from it.

An identifying reference expression (IRE), which identifies an object in the domain. This is the iota
operator, and is used in the inform-ref macro act and other acts derived from it.

B.2.2 SL Well-formed formula (SLWff)

A well-formed formula is constructed from an atomic formula, whose meaning will be determined by the semantics
of the underlying domain representation, or recursively by applying one of the construction operators or logical
connectives described in the grammar rule. These are:

(not <SLWff>)
Negation. The truth value of this expresion is false if SLWffis true. Otherwise it is true.

(and <SLWEf0> <SLWEffl>)
Conjunction. This expression is true iff well-formed formulae SLWff0 and SLWff1 are both true,
otherwise it is false. :

(or <SLWE£fO0> <SLWffl>)
Disjunction. This expression is false iff well-formed formulae SLWff0 and SLWff1 are both false,
otherwise it is true. :

(implies <SLWEff0> <SLWffl>)
Implication. This expression is true if either SLWff0 is false, or alternatively if SLWff0 is true and SLWIf1
is true. Otherwise it is false. The expression corresponds to the standard material implication connective:
SLWI{f0 = SLWIf1. '

(equiv <SLWEff0> <SLWEffl>)
Equivalence. This expression is true if either SLWFf0 is true and SLWIf1 is true, or alternatively if SLWff0
is false and SLWIf1 is false. Otherwise is is false.

(forall <variable> <SLWff>)
Universal quantification. The quantifed expression is

http://216.239.57.104/search?q=cache:Ep8p2hg0IK0J:www fipa.org/specs/fipa00018/0C000... 4/14/04

This is G o o g | e's cache of http://www.csse.monash.edu.au/~dmoulderfthesis_draft/node53.html.
G o 0 g | e's cache is the snapshot that we taok of the page as we crawled the web.
The page may have changed since that time. Click here for the current page without highlighting.

To link to or bookmark this page, use the following url: http://wwiv.google.com/search?
g=cache : PVJU4udoFOMJ : www.csse .monash.edu.au/~dmoulder/thesis_draft/node53.html+%2B%
22Agent+Communication+language%22&hl=en&ie=UTF-8

Google is not affiliated with the authors of this page nor responsible for its content.

These search terms have been highlighted: agent communication language

Il || F3 || 571 previous || 5} contents

Next: General Syntax Up: Inter-agent Communication Previous: Inter-agent Communication

Inter-agent Communication Language for
Agents

One of the properties of agents is their ability to communicate with other agents. NFACT communicates
with other agents to retrieve useful articles. The agent does not retrieve rules from other agents because
the rules that are used need to be generated from the user's own preferences and not another user, is who
may have different interests even within the same topic domain. An abstract language has been created
to allow communication between other agents and the Agent Coordinator.

General Syntax

Send

Get

Example of Agent Interaction

Daryl Moulder
1998-10-30

Disclaimer

http://216.239.57.104/search?q=cache:PVJU4u40FOMJ: www.csse.monash.edu.au/~dmoulde... 4/14/04

WEST Refine Search Page 1 of 1

Refine Search
Search Results -
Terms "Documents|
(dialogue or speech) adj system and KQML" Tl

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database

Database: [REOFAN (ALl EEE
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

L3
Search:

2%%’4’3

 OE T e
| Recall Text <

Search History

DATE: Wednesday, April 14,2004 Printable Copy Create Case

Set Name Query Hit Count Set Name
side by side result set
DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=NO, OP=0R
L3 (dialogue or speech) adj system and KQML 1 L3
L2 L1 and (dialogue or speech) adj system 1 L2
L1 706/12.ccls. 200 L1
END OF SEARCH HISTORY

http://westbrs:9000/bin/cgi-bin/PreSearch.pl 4/14/04

Record List Display Page 1 of 1

Hit List

— CenerioCollssien | m N B Rels |
l

Search Results - Record(s) 1 through 1 of 1 returned.

[1. DocumentID: US 6233570 Bl

Using default format because multiple data bases are involved.
L2: Entry 1 of 1 File: USPT May 15, 2001

US-PAT-NO: 6233570
DOCUMENT-IDENTIFIER: US 6233570 Bl

TITLE: Intelligent user assistance facility for a software program
DATE-ISSUED: May 15, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY
Horvitz; Eric Kirkland WA

Breese; John S. Mercer Island WA

Heckerman; David E. Bellevue WA

Hobson; Samuel D. Seattle WA

Hovel; David O. Redmond WA

Klein; Adrian C. Seattle WA

Rommelse; Jacobus A. Westerhoven NL
Shaw; Gregory L. Kirkland WA

US-CL-CURRENT: 706/11; 706/12, 707/102

| Cleer || GencmfoColcton | Pint | FwdReb || SlodRekd | Conom OACS |

[Terms [[Documents]
|L1 and (dialogue or speech) adj system || ll

Display Format: [i

Previous Page Next Page Go to Doc#

http://westbrs:9000/bin/gate.exe?f=TOC&state=s2uj20.3 &ref=2&dbname=PGPB,USPT,US... 4/14/04

Record List Display Page 1 of 1

Hit List

[Cencria Colleelen Ring EVIRE B ‘_
QACS

Search Results - Record(s) 1 through 1 of 1 returned.

1 1. DocumentID: US 20030093419 Al

Using default format because multiple data bases are involved.
L3: Entry 1 of 1 File: PGPB May 15, 2003

PGPUB-DOCUMENT-NUMBER: 20030093419
PGPUB-FILING~TYPE: new
DOCUMENT-IDENTIFIER: US 20030093419 Al

TITLE: System and method for querying information using a flexible multi-modal
interface

PUBLICATION-DATE: May 15, 2003

INVENTOR-INFORMATION:

NAME CITY STATE COUNTRY RULE-47
Bangalore, Srinivas Morristown NJ Us
Johnston, Michael : Hoboken NJ Us
Walker, Marilyn A. Morristown NJ Us
Whittaker, Stephen Morristown NJ Us

US-CL-CURRENT: 707/3

[Terms [Documents |
l(dialogue or speech) adj system and KQML _" 1

Display Format: [{

Previous Page Next Page Go to Doc#

http://westbrs:9000/bin/gate.exe ?f=TOC&state=s2uj20.5&ref=3&dbname=PGPB,USPT,US... 4/14/04

NPL Virtual Library Page 1 of 2

USPTO L . N e e P . et & e

|nt,an;3) SES rEs FIREGLSEE DOrieEE femTat Yeamwmh

Scientific and Technical Information Center

Patent Intranet > NPL Virtual Library Site Feedback

JNPL Home | STIC Catalog | Site Guide | EIC | Automation Training/ITRPs | Contact Us | STIC Staff | FAQ | Firewall Authentication}

A ad\i“’:a' fﬂfc’%

NPL Services for Examiners

- @5 ScienceDirect Journals

Wednesday, April 14, 2004

STIC's mission is to connect examiners to critical prior art by providing information services and
access to NPL electronic resources and print collections. A STIC facility is located in each Technology
Center.

Most of the electronic resources listed on these Web pages are accessed via the Internet. You must
be authenticated for data to be accessed. » iLirewal:Authentication;
Specialized Information Resources for Technology Centers

Select a Technology Center

[Technology Centers: E

Information Resources and Services

List of Major E-Resources
List of eBook and eJournal Titles

Reference Tools
Legal Resources

Nanotechnology

STIC Online Catalog
PLUS System

Foreign Patent Services
Translation Services

Trademark Law Library

Request STIC Services from your Desktop

Request a Prior Art Search

Request Delivery of Article or Book Reference
Request Purchase of a Book/Journal

Request Foreign Patent Document

Request a Translation

http://ptoweb/patents/stic/ 4/14/04

NPL Virtual Library Page 2 of 2

Request PLUS Search

Intranet Home | Index | Resources | Contacts | Internet | Search | Firewall | Web Services

Last Modified; 03/25/2004 13:36:15

http://ptoweb/patents/stic/ 4/14/04

TC 2100 Page 1 of 3

T o D oregsi e mvane T DA s AN S R Vg Sl arme HETTAVT RS B2t wa e
Intrane THRAAG TGN IR SRR LONIREEE RETIED SR

ey

Scientific and Technical Information Center

Patent Intranet > NPL Virtual Library > EIC2100 Site Feedback
|NPL Home | STIC Catalog | Site Guide | EIC | Automation Training/ITRPs | Contact Us | STIC Staff | FAQ | Firewall Authentication]

TC2100: EIC Resources and Services

ScienceDirect Journals

Daily Breaking News on Emerging Technologies:
Encryption
Information & Data Security

Internet Security

Wednesday, April 14, 2004

These resources and services provide examiners with access to critical prior art. Most of the electronic
resources listed on these Web pages are accessed via the Internet. You must be authenticated for
data to be accessed. p :Eitewal:Authentication,

2> indicates tools featured in TC's NPL training.

Information Resources

Information Resources by Class and Subclass

Databases

= ACM Digital Library
Business Source Corporate
(Multidisciplinary subject coverage)
Dialog Classic on the Web
(Training and password required.)
DTIC STINET
(Citations of Defense Technical Information Center scientific and technical documents)
EEDD Submission Form
Examiners’ Electronic Digest Database (EEDD)
(Database of examiner submitted NPL)
EPOQUE
(EPO's databases, available on stand-alone terminal in CPK2, 4B40)

= |EEE Xplore
(Full page images of over 800,000 Electrical & Electronic Engineering articles, papers and

standards, 1988 - present. Select content is available from 1952-1987.)
INSPEC
(Seven million well-indexed physics, EE, and IT abstracts, 1969-present)
IP.com
(Defensive disclosures published to the Disclosures IP.com database from various websites)
NTIS (National Technical information Service)
(resource for government-funded scientific, technical, engineering, and business related
information)
Proquest Direct
(Multidisciplinary subject coverage)
Readers’ Guide to Periodical Literature
(citations to popular multidisciplinary magazines)
Research Disclosure
(Published monthly as a paperjoumnal and now as an online database product with advanced full
text searching capabilities for defensive disclosure information.)

http://ptoweb/patents/stic/stic-tc2100.htm 4/14/04

TC 2100 Page 2 of 3

Software Patent Institute (SPI) (Select "Free Access")
(Searchable database of Software Technologies.)

SPIE Digital Library
(joumals and proceedings on optics and photonics)

STN on the Web (training and password required)
(The other link is via the Patent Examiner's Toolkit. On your computer, click on the START button,
then on the PE Toolkit, then on STN Express.)

True Query
(A resurrected version of the old "Computer Select” database, providing full text access to over
100 technology focused publications, a glossary of technical terms, product reviews and over
60,000 product specifications from 1999 to the present. If html code appears on your screen,
click browser's "Reload” or "Refresh” button.)

Books and Journals

> Search STIC Online Catalog

InfoSECURITYnetBASE

(Information security)
Knovel

(Applied science and engineering)
NetLibrary.com

(Multidisciplinary subject coverage)
Safari Online Books

(Computer and information technology)
ScienceDirect

(scientific, technical, and medical journals)
Springer Publishing Company

(biotech, physics, and computer journals)

Daily Newspapers
Fulltext newspaper articles are available electronically in Proquest Direct.

CD-ROM Resources

Older full text NPL resources/articles received in CD-Rom format. These resources are
available on EIC2100 PCs in CPK2, 4B40.

Equipment

Reference Tools

Bartleby.com
(Several versions of Roget's Thesaurus, a dictionary, an encyclopedia, quotations, English usage

books and more.)
Computer References

(Dictionaries, Acronyms Finders, Encyclopedias)
Efunda

(30,000 pages of engineering fundamentals and calculators)
Encyclopedia Britannica
Encyclopedia of Software Engineering
Eric Weisstein's World of Mathematics

(A comprehensive online encyclopedia of mathematics.)
HowStuffWorks

(Search a term to find articles that explain how it works.)
Over 2000 Glossary Links

(Links to numerous technical, specialty, and general glossaries.)
PCWebopedia
Wiley Encyclopedia of Electrical and Electronics Engineering
Yourdictionary.com

http://ptoweb/patents/stic/stic-tc2100.htm 4/14/04

TC 2100 Page 3 of 3

{(Numerous "specialty dictionaries”... technological, law, business related and more.)

Services

EIC2100 Staff

Foreign Patent Services

PLUS

Request a Book/Journal Purchase

Request a Book or Article

Request a Foreign Patent Publication
[e-submit] [Printable form]

Request a Prior Art Search
[e-submit] [Printable form]
Fast & Focused Search Criteria

STIC Online Catalog

Translation Services

Web Resources
A Brief History of the Hard Disk Drive

o> CiteSeer (Researchindex)

(Full text scientific research papers - in pdf and postscript formats.)

Internet Engineering Task Force
(The IETF Secretaniat, run by The Corporation for National Research Initiatives with funding from
the US government, maintains an index of Intemet-Drafts.)

Nanotechnology

Requests for Comments (RFCs) Database
(Requests for Comments (RFC) document senies is a set of technical and organizational
notes about the Intemet (oniginally the ARPANET), beginning in 1969 and discussing many
aspects of computer networking, including protocols, procedures and concepts as well as
meeting notes and opinions.)

2 Usenet Archive (Google Groups)

e Wayback Machine
(Archived web pages.)

Submit comments and suggestions to Anne Hendrickson To report technical problems, click here

Intranet Home | Index | Resources | Contacts | Internet | Search | Firewall | Web Services

Last Modified: 03/25/2004 13:36:02

http://ptoweb/patents/stic/stic-tc2100.htm 4/14/04

Welcome to IEEE Xplore

|IEEE HOME | SEARCH IEEE

Membership

IEEE Xplores

Terms

FAQ

Help
Weicome to IEEE Xplore®

(- Home

What Can
O | Access?

O Log-out

Tables of Contents

QI

Journals
& Magazines

(O~ Conference
Proceedings

(O standards

(O By Author
(- Basic

(- Advanced

Member Services

O Join IEEE

(O Establish IEEE
Web Account

(O Access the
IEEE Member
Digital Library

http://ieeexplore.ieee.org/Xplore/DynWel.jsp

Publications/Services

IEEE Peer Review

Page 1 of 1

| SHOP | WEB ACCOUNT | CONTACT IEEE

< IEEE

Standards Conferences Careers/Jobs

B

o

Welcome /‘)

United States Patent and Trademark Office Lo

RELEASE 1.6 3

-

o

Over 1,024,576 documents available

IEEE ANNOUNCES NEW RELEASE FOR IEEE XPLORE
ENHANCEMENTS - LEARN MORE.

IEEE Xp

uick L

IEEE Xplore provides full-text access to IEEE transactions, ? New Thi
journals, magazines and conference proceedings published since e
1988 plus select content back to 1950, and all current IEEE » ?:f—’(;rc;"‘.f
Standards. > Email Al
® Your Fe¢

® Technic:

FREE TO ALL: Browse tables of contents and access Abstract > Do Robe
records of IEEE transactions, journals, magazines, conference > Release
proceedings and standards. > %ﬁ‘c%%

IEEE MEMBERS: Browse or search to access any complete
Abstract record as well as articles from IEEE Spectrum Magazine.
Access your personal online subscriptions using your active IEEE
Web Account. If you do not have one, go to "Establish IEEE Web
Account” to set up an account.

CORPORATE, GOVERNMENT AND UNIVERSITY
SUBSCRIBERS: Search and access complete Abstract records
and full-text documents of the IEEE online publications to which
your institution subscribes.

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced
Join |IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Ema
No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ| Terms | Back to Top

Copyright © 2004 IEEE — Al rights reserved

4/14/04

Advanced Search

|IEEE HOME | SEARCH IEEE

Membaearship

IEEE Xplore®

Help FAQ Terms

Publications/Services

IEEE Peer Review

I SHOP | WEB ACCOUNT | CONTACT IEEE

Standards Conferences

Welcome

RELEASE 1.6

[Quick Links El

Vielcome to IEEE Xplores

- Home

What Can
O [Access?

O Log-out

Tables of Contents

QI

Journals_
& Magazines

(O Conference
Proceedings

(O standards

Search

(O~ By Author
(- Basic
(O Advanced

Member Services

O Join IEEE

(- Establish IEEE
Web Account

(O Access the
IEEE Member
Digital Library

1) Enter a single keyword, phrase, or Boolean expression.
Example: acoustic imaging (means the phrase acoustic imaging

plus any stem variations)
2) Limit your search by using search operators and field codes,

if desired.

Example: optical <and> (fiber <or> fibre) <in> ti
3) Limit the results by selecting Search Options.
4) Click Search. See Search Examples

multiagent <or> multi-agent
<and> kqgml

Careers/Jobs

United States Patent and Trademark Office

Page 1 of 1

< IEEE

» Adva

Search Options:
Select publication types:

[¥] 1EEE Journals

IEE Journals

E IEEE Conference proceedings
IEE Conference proceedings
[¥] 1EEE Standards

Select years to search:

From year: |All @ to | Present @

Organize search resuilts by:

i

sort by: |Relevance !

Note: This function returns plura!l and suffixed forms of the
keyword(s).

Search operators: <and> <or> <not> <in> More

Field codes: au (author), ti (title), ab (abstract), jn (publication
name), de (index term) More

tn: [Descending [E] orcer

List m Results per page

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account |

New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online

Publications | Help | FAQ| Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

http://ieeexplore.ieee.org/search/advsearch.jsp

4/14/04

Search Results Page 1 of 2
IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE @IEEE
Membership Publications/Services Standards Conferences Careers/Jobs
' g 1l
IEEE Xplore® |
. . United States Patent and Trademark Office ag 1
RELEASE 1.6 B
Help FAQ Terms IEEE Peer Review |Quick Links » Se:
(O Home Your search matched 5 of 1024576 documents.
(O What Can A maximum of 500 results are displayed, 15 to a page, sorted by Relevance
I Access? Descending order.
(- Log-out
S — Refine This Search:
a0'es 0 et You may refine your search by editing the current search expression or enteri
O-Joumals. new one in the text box. _ _
& Magazines [multiagent <and> kqml []
O' g?ggg&?ﬁs [CJ Check to search within this result set
O- standards Results Key:
INL = Journal or Magazine CNF = Conference STD = Standard
(O By Author
(O Basic 1 Toward an open virtual market place for mobile agents
O Advanced Esmahi, L.; Dini, P.; Bernard, J.C.;
Enabling Technologies: Infrastructure for Collaborative Enterprises, 1999. (W
ICE '99) Proceedings. IEEE 8th International Workshops on , 16-18 June 199¢
) Pages:279 - 286
O Join IEEE
(O- Establish IEEE [Abstract] [PDF Full-Text (100 KB)] IEEE CNF
Web Account
O Access the 2 A product retrieval system for electronic commerce based on KQML
IEEE Member Jeong-Il Song; Han-Hyuk Chung; Eun-Seok Lee;
Digital Library Parallel Processing, 1999. Proceedings. 1999 International Workshops on , 21

Sept. 1999
Pages:387 - 391

[Abstract] [PDF Full-Text (124 KB)] IEEE CNF

3 Coordinating multiple agents in the supply chain

Barbuceanu, M.; Fox, M.S.; ‘

Enabling Technologies: Infrastructure for Collaborative Enterprises, 1996.
Proceedings of the 5th Workshop on , 19-21 June 1996

Pages:134 - 141

[Abstract] [PDF Full-Text (1164 KB)] IEEE CNF

4 Collaborative prototyping in distributed virtual reality using an agei
communication language

Nedelec, A.; Reignier, P.; Rodin, V.;

Systems, Man, and Cybernetics, 2000 IEEE International Conference on, Vol
2, 8-11 Oct. 2000

Pages:1007 - 1012 vol.2

http://ieeexplore.ieee.org/search/searchresult.jsp?query Text=multiagent+%3Cand%3E+kqml... 4/14/04

Search Results Page 2 of 2

[Abstract] [PDF Full-Text (508 KB)] 1EEE CNF

5 Developing coherent multiagent systems using JAFMAS

Chauhan, D.; Baker, A.D.;

Multi Agent Systems, 1998. Proceedings. International Conference on, 3-7 1t
1998

Pages:407 - 408

[Abstract] [PDF Full-Text (16 KB)] IEEE CNF

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account |
New this week | OPAC Linking Information | Your Feedback | Technical Support | Emai! Alerting | No Robots Please | Release Notes | IEEE Online
Publications | Help | FAQ|} Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

http://ieeexplore.ieee.org/search/searchresult.jsp?queryText=multiagent+%3Cand%3E+kqml... 4/14/04

NPL Virtual Library : Page 1 of 2

USPTO s e o Gt o a Ve i et N e 3zl
Intra ‘b Seie iees DERGUsEE DROeER ierer Yeown

-t

Scientific and Technical Information Center

Patent Intranet > NPL Virtual Library Site Feedback
INPL Home | STIC Catalog | Site Guide | EIC | Automation Training/ITRPs | Contact Us | STIC Staff | FAQ | Firewall Authentication]

sodl
&éyé"r' Yo,
: S

% NPL Services for Examiners

ScienceDirect Journals

Wednesday, April 14, 2004

STIC's mission is to connect examiners to critical prior art by providing information services and
access to NPL electronic resources and print collections. A STIC facility is located in each Technology
Center.

Most of the electronic resources listed on these Web pages are accessed via the Internet. You must
be authenticated for data to be accessed. » .Eitewall:Authentication,
Specialized Information Resources for Technology Centers

Select a Technology Center
[Technology Centers:

Information Resources and Services

List of Major E-Resources
List of eBook and eJournal Titles

Reference Tools
Legal Resources

Nanotechnology

STIC Online Catalog
PLUS System

Foreign Patent Services
Translation Services
Trademark Law Library

Request STIC Services from your Desktop

Request a Prior Art Search
Request Delivery of Article or Book Reference

Request Purchase of a Book/Journal
Request Foreign Patent Document

Request a Translation

http://ptoweb/patents/stic/ 4/14/04

NPL Virtual Library Page 2 of 2

Request PLUS Search

Intranet Home | Index | Resources | Contacts | Internet | Search | Firewall | Web Services

Last Modified: 03/25/2004 13:36:15

http://ptoweb/patents/stic/ 4/14/04

TC 2100 Page 1 of 3

USPTO
Intranet /7
24

Scientific and Technical Information Center

Patent intranet > NPL Virtual Library > EIC2100 Site Feedback
INPL Home | STIC Catalog | Site Guide | EIC | Automation Training/ITRPs | Contact Us | STIC Staff | FAQ | Firewall Authentication)

figme s b ooregnt (o hngsaein ¢ ¢ <12 o Upza o : L agmg e AT YRV RT T) N e
SR THER FRRGu s CHETIReE lheengr Heeaml

A%y

TC2100: EIC Resources and Services

06‘\:63 rn!o‘?‘b
»
. 3 ScienceDirect Journals
. 9 Daily Breaking News on Emerging Technologies:
Encryption

USPTO Information & Data Security
Internet Security

Wednesday, April 14, 2004

These resources and services provide examiners with access to critical prior art. Most of the electronic
resources listed on these Web pages are accessed via the Internet. You must be authenticated for
data to be accessed. » .Eitewall.Authentication,

=> indicates tools featured in TC's NPL training.

Information Resources

Information Resources by Class and Subclass

Databases

2> ACM Digital Library
Business Source Corporate
(Multidisciplinary subject coverage)
Dialog_Classic on the Web
(Training and password required.)
DTIC STINET
(Citations of Defense Technical Information Center scientific and technical documents)
EEDD Submission Form
Examiners' Electronic Digest Database (EEDD)
(Database of examiner submitted NPL)
EPOQUE
(EPO's databases, available on stand-alone terminal in CPK2, 4B40)

> |EEE Xplore
(Full page images of over 800,000 Electrical & Electronic Engineening articles, papers and
standards, 1988 - present. Select content is available from 1952-1987.)
INSPEC
(Seven million well-indexed physics, EE, and IT abstracts, 1969-present)
IP.com
{Defensive disclosures published to the Disclosures IP.com database from various websites)
NTIS (National Technical Information Service)
(resource for government-funded scientific, technical, engineering, and business related
information)
Proquest Direct
(Multidisciplinary subject coverage)
Readers' Guide to Periodical Literature
(citations to popular multidisciplinary magazines)
Research Disclosure
(Published monthly as a paper joumnal and now as an online database product with advanced full
text searching capabilities for defensive disclosure information.)

http://ptoweb/patents/stic/stic-tc2100.htm 4/14/04

Page 2 of 3

Software Patent Institute (SPI) (Select "Free Access")
(Searchable database of Software Technologies.)

SPIE Digital Library
(joumals and proceedings on optics and photonics)

STN on the Web (training and password required)
(The other link is via the Patent Examiner's Toolkit. On your computer, click on the START button,
then on the PE Toolkit, then on STN Express.)

True Query
(A resurrected version of the old "Computer Select” database, providing full text access to over
100 technology focused publications, a glossary of technical terms, product reviews and over
60,000 product specifications from 1999 to the present. If html code appears on your screen,

click browser's "Reload" or "Refresh" button.)

Books and Journals

e Search STIC Online Catalog

InfoSECURITYnetBASE

(Information security)
Knovel

(Applied science and engineering)
NetLibrary.com

(Muitidisciplinary subject coverage)
Safari Online Books

(Computer and information technology)
ScienceDirect

(scientific, technical, and medical joumnals)
Springer Publishing Company

(biotech, physics, and computer journals)

Daily Newspapers
Fulltext newspaper articles are available electronically in Proquest Direct.

CD-ROM Resources

Older full text NPL resources/articles received in CD-Rom format. These resources are

available on EIC2100 PCs in CPK2, 4B40.
Equipment
Reference Tools

Bartleby.com

(Several versions of Roget's Thesaurus, a dictionary, an encyclopedia, quotations, English usage

books and more.)
Computer References

(Dictionanes, Acronyms Finders, Encyclopedias)
Efunda

(30,000 pages of engineering fundamentals and calculators)
Encyclopedia Britannica
Encyclopedia of Software Engineering
Eric Weisstein's World of Mathematics

(A comprehensive online encyclopedia of mathematics.)
HowStuffWorks

(Search a term to find articles that explain how it works.)
Qver 2000 Glossary Links

(Links to numerous technical, specialty, and general glossarnies.)
PCWebopedia
Wiley Encyclopedia of Electrical and Electronics Engineering
Yourdictionary.com

http://ptoweb/patents/stic/stic-tc2100.htm

4/14/04

TC 2100 Page 3 of 3

(Numerous "specialty dictionaries”... technological, law, business related and more.)

Services

EIC2100 Staff

Foreign Patent Services

PLUS

Request a Book/Journal Purchase

Request a Book or Article

Request a Foreign Patent Publication
[e-submit] [Printable form)

Request a Prior Art Search
[e-submit] [Printable form]
Fast & Focused Search Criteria

STIC Online Catalog

Translation Services

Web Resources
A Brief History of the Hard Disk Drive

2> CiteSeer (Researchindex)

(Full text scientific research papers - in pdf and postscript formats.)

Internet Engineering Task Force
(The IETF Secretaniat, run by The Corporation for National Research Initiatives with funding from
the US govemment, maintains an index of Intemet-Drafts.)

Nanotechnology

Requests for Comments (RFCs) Database
(Requests for Comments (RFC) document series is a set of technical and organizational
notes about the Intemet (originally the ARPANET), beginning in 1969 and discussing many
aspects of computer networking, including protocols, procedures and concepts as well as
meeting notes and opinions.)

2> Usenet Archive (Google Groups)

> Wayback Machine
(Archived web pages.)

Submit comments and suggestions to Anne Hendrickson To report technical problems, click here

Intranet Home | Index | Resources | Contacts | Internet | Search | Firewall | Web Services

Last Modified: 03/25/2004 13:36:02

http://ptoweb/patents/stic/stic-tc2100.htm

4/14/04

Welcome to IEEE Xplore

IEEE HOME | SEARCH IEEE

Membership

1EEE Xplore

Publications/Services

| SHOP | WEB ACCOUNT | CONTACT IEEE

Standards

Conferences Careers/Jobs

Welcome
United States Patent and Trademark Office

RELEASE 1.6

Page 1 of 1

Help FAQ Terms IEEE Peer Review Over 1,024,576 documents available
o
O- Home IEEE ANNOUNCES NEW RELEASE FOR IEEE XPLORE
O—W‘:\atCan ENHANCEMENTS - LEARN MORE.
| Access? i . Quick L
O—Lo -out IEEE Xplore provides full-text access to IEEE transactions, > New Thi
g journals, magazines and conference proceedings published since
Tables of Contents 1988 plus select content back to 1950, and all current IEEE > &?ﬁfmﬁ'
Standards. » Email Al
OO Journals
& Magazines » Your Fee
(- Conference > Technic:
Proceedings » No Robc
O- standards FREE TO ALL: Browse tables of contents and access Abstract
records of IEEE transactions, journals, magazines, conference > Release
m proceedings and standards. » L[EEEON
Publicati
O- By Author 1IEEE MEMBERS: Browse or search to access any complete
(- Basic Abstract record as well as articles from IEEE Spectrum Magazine.
(O Advanced Access your personal online subscriptions using your active IEEE
Web Account. If you do not have one, go to "Establish IEEE Web
Member Services Account” to set up an account.
8 ‘é::";i izg | CORPORATE, GOVERNMENT AND UNIVERSITY
Weg Alceounl SUBSCRIBERS: Search and access complete Abstract records
and full-text documents of the IEEE online publications to which
OO Access the your institution subscribes.
[EEE Member
Digital Library
>, Powgred by
’ eRights

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced
Join |IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Ema
No Robots Piease | Release Notes | IEEE Online Publications | Help | FAQ| Terms | Back to Top

Copyright © 2004 |IEEE — All rights reserved

http://ieeexplore.ieee.org/Xplore/DynWel jsp 4/14/04

Search Results Page 1 of 1

|EEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE @[EEE

Membership Publications/Services Standards Conferences Careers/Jobs

S -) L I
1EEE Xplore®
- i United States Patent and Trademark Office a1
» ;T RELEASE 1.6 = @
Help FAQ Terms IEEE PeerReview |Quick Links » Se
O- Home Your search matched 2 documents.
(O~ What Can
I Access? A maximum of 500 results are displayed, 15 to a page, sorted by Relevance
O Log-out Descending order.
O—Journals JNL = Journal or Magazine CNF = Conference STD = Standard
& Magazines
Conference 1 Tooling the lexicon acquisition process for large-scale KBMT
Proceedings Leavitt, J.R.R.; Lonsdale, D.W., Keck, K.; Nyberg, E.H.;
(- standards Tools with Artificial Intelligence, 1994. Proceedings., Sixth International Confe
on, 6-9 Nov. 1994
Pages:263 - 269
O By Author [Abstract] [PDF Full-Text (648KB)] IEEE CNF
(O Basic

distributed natural language processing
Leavitt, J.R.R.; Nyberg, E.;
Tools for Artificial Intelligence, 1990.,Proceedings of the 2nd International IEf

(- Advanced 2 The DIBBS blackboard control architecture and its application to

O oin IE.EE Conference on , 6-9 Nov. 1990

(O Establish IEEE | pages:202 - 208
Web Account

O Access the [Abstract] [PDF Full-Text (664KB)] IEEE CNF
IEEE Member
Digital Library

Copyright © 2004 IEEE — All rights reserved

http://ieeexplore.ieee.org/search/quicksrchresult.jsp?query Text=%28leavitt%20j.%20%20r.%... 4/14/04

	2004-04-14 Examiner's search strategy and results

